Nuprl Lemma : l_disjoint-fpf-dom

[A:Type]. ∀[eq:EqDecider(A)]. ∀[f:a:A fp-> Top]. ∀[L:A List].
  uiff(l_disjoint(A;fst(f);L);∀[a:A]. ¬(a ∈ L) supposing ↑a ∈ dom(f))


Proof




Definitions occuring in Statement :  fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) l_disjoint: l_disjoint(T;l1;l2) l_member: (x ∈ l) list: List assert: b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] top: Top pi1: fst(t) not: ¬A universe: Type
Lemmas :  l_member_wf assert_wf deq-member_wf all_wf not_wf uall_wf isect_wf list_wf top_wf deq_wf assert-deq-member
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  Top].  \mforall{}[L:A  List].
    uiff(l\_disjoint(A;fst(f);L);\mforall{}[a:A].  \mneg{}(a  \mmember{}  L)  supposing  \muparrow{}a  \mmember{}  dom(f))



Date html generated: 2015_07_17-AM-11_16_18
Last ObjectModification: 2015_01_28-AM-07_38_18

Home Index