Nuprl Lemma : l_disjoint-fpf-dom
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[f:a:A fp-> Top]. ∀[L:A List].
  uiff(l_disjoint(A;fst(f);L);∀[a:A]. ¬(a ∈ L) supposing ↑a ∈ dom(f))
Proof
Definitions occuring in Statement : 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
l_disjoint: l_disjoint(T;l1;l2), 
l_member: (x ∈ l), 
list: T List, 
assert: ↑b, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
pi1: fst(t), 
not: ¬A, 
universe: Type
Lemmas : 
l_member_wf, 
assert_wf, 
deq-member_wf, 
all_wf, 
not_wf, 
uall_wf, 
isect_wf, 
list_wf, 
top_wf, 
deq_wf, 
assert-deq-member
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  Top].  \mforall{}[L:A  List].
    uiff(l\_disjoint(A;fst(f);L);\mforall{}[a:A].  \mneg{}(a  \mmember{}  L)  supposing  \muparrow{}a  \mmember{}  dom(f))
Date html generated:
2015_07_17-AM-11_16_18
Last ObjectModification:
2015_01_28-AM-07_38_18
Home
Index