Nuprl Lemma : l_disjoint-fpf-join-dom

[A:Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> Top]. ∀[L:A List].
  uiff(l_disjoint(A;fst(f ⊕ g);L);l_disjoint(A;fst(f);L) ∧ l_disjoint(A;fst(g);L))


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf: a:A fp-> B[a] deq: EqDecider(T) l_disjoint: l_disjoint(T;l1;l2) list: List uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top pi1: fst(t) and: P ∧ Q universe: Type
Lemmas :  l_disjoint-fpf-dom fpf-join_wf top_wf fpf-join-dom assert_wf fpf-dom_wf l_member_wf l_disjoint_wf fpf_wf list_wf deq_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  Top].  \mforall{}[L:A  List].
    uiff(l\_disjoint(A;fst(f  \moplus{}  g);L);l\_disjoint(A;fst(f);L)  \mwedge{}  l\_disjoint(A;fst(g);L))



Date html generated: 2015_07_17-AM-11_16_21
Last ObjectModification: 2015_01_28-AM-07_40_27

Home Index