Nuprl Lemma : normal-ds-join
∀ds1,ds2:x:Id fp-> Type.  (Normal(ds1) ⇒ Normal(ds2) ⇒ Normal(ds1 ⊕ ds2))
Proof
Definitions occuring in Statement : 
normal-ds: Normal(ds), 
fpf-join: f ⊕ g, 
fpf: a:A fp-> B[a], 
id-deq: IdDeq, 
Id: Id, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Lemmas : 
fpf-dom_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
fpf-join-ap-sq, 
fpf-join-dom, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
id-deq_wf, 
fpf-join_wf, 
top_wf, 
subtype-fpf2, 
subtype_top, 
normal-ds_wf, 
fpf_wf, 
Id_wf
\mforall{}ds1,ds2:x:Id  fp->  Type.    (Normal(ds1)  {}\mRightarrow{}  Normal(ds2)  {}\mRightarrow{}  Normal(ds1  \moplus{}  ds2))
Date html generated:
2015_07_17-AM-11_18_31
Last ObjectModification:
2015_01_28-AM-07_35_25
Home
Index