Step
*
1
1
1
of Lemma
prior-val-induction3
1. [Info] : Type
2. [T] : Type
3. es : EO+(Info)@i'
4. X : EClass(T)@i'
5. ∀[P:E(X) ─→ ℙ]
((∀e:E(X). (P[e] supposing ¬↑e ∈b prior(X) ∧ P[prior(X)(e)]
⇒ P[e] supposing ↑e ∈b prior(X)))
⇒ (∀e:E(X). P[e]))
6. [P] : E(X) ─→ T ─→ ℙ
7. ∀e:E(X). (P[e;X(e)] supposing ¬↑e ∈b (X)' ∧ P[prior(X)(e);(X)'(e)]
⇒ P[e;X(e)] supposing ↑e ∈b (X)')@i
8. e : E(X)@i
9. P[e;X(e)] supposing ¬↑e ∈b prior(X)
10. ↑e ∈b prior(X)
11. P[prior(X)(e);X(prior(X)(e))]@i
⊢ P[e;X(e)]
BY
{ ((InstHyp [⌈e⌉] (-5)⋅ THENA Auto) THEN D -1 THEN D -1 THEN Auto)⋅ }
1
1. [Info] : Type
2. [T] : Type
3. es : EO+(Info)@i'
4. X : EClass(T)@i'
5. ∀[P:E(X) ─→ ℙ]
((∀e:E(X). (P[e] supposing ¬↑e ∈b prior(X) ∧ P[prior(X)(e)]
⇒ P[e] supposing ↑e ∈b prior(X)))
⇒ (∀e:E(X). P[e]))
6. [P] : E(X) ─→ T ─→ ℙ
7. ∀e:E(X). (P[e;X(e)] supposing ¬↑e ∈b (X)' ∧ P[prior(X)(e);(X)'(e)]
⇒ P[e;X(e)] supposing ↑e ∈b (X)')@i
8. e : E(X)@i
9. P[e;X(e)] supposing ¬↑e ∈b prior(X)
10. ↑e ∈b prior(X)
11. P[prior(X)(e);X(prior(X)(e))]@i
12. P[e;X(e)] supposing ¬↑e ∈b (X)'
13. P[prior(X)(e);(X)'(e)]
⇒ P[e;X(e)]
⊢ P[e;X(e)]
Latex:
Latex:
1. [Info] : Type
2. [T] : Type
3. es : EO+(Info)@i'
4. X : EClass(T)@i'
5. \mforall{}[P:E(X) {}\mrightarrow{} \mBbbP{}]
((\mforall{}e:E(X). (P[e] supposing \mneg{}\muparrow{}e \mmember{}\msubb{} prior(X) \mwedge{} P[prior(X)(e)] {}\mRightarrow{} P[e] supposing \muparrow{}e \mmember{}\msubb{} prior(X)))
{}\mRightarrow{} (\mforall{}e:E(X). P[e]))
6. [P] : E(X) {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
7. \mforall{}e:E(X)
(P[e;X(e)] supposing \mneg{}\muparrow{}e \mmember{}\msubb{} (X)' \mwedge{} P[prior(X)(e);(X)'(e)] {}\mRightarrow{} P[e;X(e)] supposing \muparrow{}e \mmember{}\msubb{} (X)')@i
8. e : E(X)@i
9. P[e;X(e)] supposing \mneg{}\muparrow{}e \mmember{}\msubb{} prior(X)
10. \muparrow{}e \mmember{}\msubb{} prior(X)
11. P[prior(X)(e);X(prior(X)(e))]@i
\mvdash{} P[e;X(e)]
By
Latex:
((InstHyp [\mkleeneopen{}e\mkleeneclose{}] (-5)\mcdot{} THENA Auto) THEN D -1 THEN D -1 THEN Auto)\mcdot{}
Home
Index