Nuprl Lemma : prior-val-induction3

[Info,T:Type].
  ∀es:EO+(Info). ∀X:EClass(T).
    ∀[P:E(X) ─→ T ─→ ℙ]
      ((∀e:E(X). (P[e;X(e)] supposing ¬↑e ∈b (X)' ∧ P[prior(X)(e);(X)'(e)]  P[e;X(e)] supposing ↑e ∈b (X)'))
       (∀e:E(X). P[e;X(e)]))


Proof




Definitions occuring in Statement :  es-prior-val: (X)' es-prior-interface: prior(X) es-E-interface: E(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) assert: b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ─→ B[x] universe: Type
Lemmas :  prior-interface-induction eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf es-E-interface_wf es-interface-subtype_rel2 top_wf eclass-val_wf assert_elim in-eclass_wf subtype_base_sq bool_wf bool_subtype_base assert_wf es-prior-interface_wf1 subtype_top is-prior-val-iff-prior-interface es-prior-val_wf not_wf assert_witness eclass-val_wf2 es-prior-interface_wf es-E-interface-property eqtt_to_assert bag_only_single_lemma eqff_to_assert bfalse_wf and_wf equal_wf bnot_wf btrue_neq_bfalse bool_cases_sqequal all_wf

Latex:
\mforall{}[Info,T:Type].
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(T).
        \mforall{}[P:E(X)  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}e:E(X)
                    (P[e;X(e)]  supposing  \mneg{}\muparrow{}e  \mmember{}\msubb{}  (X)'
                    \mwedge{}  P[prior(X)(e);(X)'(e)]  {}\mRightarrow{}  P[e;X(e)]  supposing  \muparrow{}e  \mmember{}\msubb{}  (X)'))
            {}\mRightarrow{}  (\mforall{}e:E(X).  P[e;X(e)]))



Date html generated: 2015_07_21-PM-03_24_08
Last ObjectModification: 2015_01_27-PM-06_48_14

Home Index