Nuprl Lemma : prior-interface-induction

[Info,T:Type].
  ∀es:EO+(Info). ∀X:EClass(T).
    ∀[P:E(X) ─→ ℙ]
      ((∀e:E(X). (P[e] supposing ¬↑e ∈b prior(X) ∧ P[prior(X)(e)]  P[e] supposing ↑e ∈b prior(X)))  (∀e:E(X). P[e]))


Proof




Definitions occuring in Statement :  es-prior-interface: prior(X) es-E-interface: E(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) assert: b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ─→ B[x] universe: Type
Lemmas :  es-causl-swellfnd event-ordering+_subtype less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__equal_int subtype_rel-int_seg false_wf le_weakening subtract_wf int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf assert_wf in-eclass_wf es-interface-subtype_rel2 es-E_wf event-ordering+_wf top_wf equal_wf all_wf int_seg_subtype-nat decidable__lt not-equal-2 condition-implies-le minus-add minus-minus minus-one-mul add-swap add-commutes add-associates add_functionality_wrt_le zero-add le-add-cancel-alt less-iff-le le-add-cancel set_wf less_than_wf primrec-wf2 decidable__le not-le-2 sq_stable__le add-zero add-mul-special zero-mul decidable__assert es-prior-interface_wf1 subtype_top es-E-interface_wf es-prior-interface-causl es-E-interface-property eclass-val_wf2 es-prior-interface_wf es-prior-interface_wf0 eclass_wf eclass-val_wf assert_functionality_wrt_uiff squash_wf true_wf

Latex:
\mforall{}[Info,T:Type].
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(T).
        \mforall{}[P:E(X)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}e:E(X).  (P[e]  supposing  \mneg{}\muparrow{}e  \mmember{}\msubb{}  prior(X)  \mwedge{}  P[prior(X)(e)]  {}\mRightarrow{}  P[e]  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)))
            {}\mRightarrow{}  (\mforall{}e:E(X).  P[e]))



Date html generated: 2015_07_21-PM-02_48_15
Last ObjectModification: 2015_01_27-PM-07_36_16

Home Index