Nuprl Lemma : tree-flow-convergent

[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[f:E(X) ─→ E(X)].
  convergent-flow(es;X;f) supposing tree-flow{i:l}(es;X;f)


Proof




Definitions occuring in Statement :  tree-flow: tree-flow{i:l}(es;X;f) convergent-flow: convergent-flow(es;X;f) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: supposing a uall: [x:A]. B[x] top: Top function: x:A ─→ B[x] universe: Type
Lemmas :  Id_wf es-loc_wf event-ordering+_subtype es-E-interface_wf not_wf equal_wf es-E_wf fun-connected_wf tree-flow_wf eclass_wf top_wf event-ordering+_wf fun-connected-induction in-eclass_wf sq_stable__assert iff_weakening_equal assert_wf decidable__es-E-equal and_wf member_wf squash_wf true_wf event_ordering_wf subtype_base_sq atom2_subtype_base
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:E(X)  {}\mrightarrow{}  E(X)].
    convergent-flow(es;X;f)  supposing  tree-flow\{i:l\}(es;X;f)



Date html generated: 2015_07_17-PM-00_59_53
Last ObjectModification: 2015_02_04-PM-05_30_19

Home Index