Nuprl Lemma : es-init-eq
∀[es:EO]. ∀[e,e':E].  es-init(es;e) = es-init(es;e') ∈ E supposing loc(e) = loc(e') ∈ Id
Proof
Definitions occuring in Statement : 
es-init: es-init(es;e)
, 
es-loc: loc(e)
, 
es-E: E
, 
event_ordering: EO
, 
Id: Id
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Lemmas : 
equal_wf, 
Id_wf, 
es-loc_wf, 
es-E_wf, 
event_ordering_wf, 
all_wf, 
es-init_wf, 
es-locl-total, 
es-locl_wf, 
es-locl-wellfnd, 
es-init-elim2, 
es-locl-first, 
assert_elim, 
btrue_neq_bfalse, 
assert_wf, 
es-first_wf2, 
es-pred_wf, 
es-pred-locl, 
es-pred-loc-base, 
iff_weakening_equal, 
squash_wf, 
true_wf
\mforall{}[es:EO].  \mforall{}[e,e':E].    es-init(es;e)  =  es-init(es;e')  supposing  loc(e)  =  loc(e')
Date html generated:
2015_07_17-AM-08_45_20
Last ObjectModification:
2015_02_04-AM-07_09_52
Home
Index