Nuprl Lemma : is-dag-map
∀[T,S:Type]. ∀[f:T ─→ S]. ∀[g:LabeledGraph(T)].  is-dag(lg-map(f;g)) supposing is-dag(g)
Proof
Definitions occuring in Statement : 
lg-map: lg-map(f;g)
, 
is-dag: is-dag(g)
, 
labeled-graph: LabeledGraph(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
lg-size-map, 
less_than_transitivity1, 
lg-size_wf, 
lg-map_wf, 
nat_wf, 
le_weakening, 
lelt_wf, 
lg-edge-map, 
lg-edge_wf, 
int_seg_wf, 
member-less_than, 
is-dag_wf, 
labeled-graph_wf
Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  S].  \mforall{}[g:LabeledGraph(T)].    is-dag(lg-map(f;g))  supposing  is-dag(g)
Date html generated:
2015_07_23-AM-11_03_29
Last ObjectModification:
2015_01_28-PM-11_33_52
Home
Index