Nuprl Lemma : is-dag-map

[T,S:Type]. ∀[f:T ─→ S]. ∀[g:LabeledGraph(T)].  is-dag(lg-map(f;g)) supposing is-dag(g)


Proof




Definitions occuring in Statement :  lg-map: lg-map(f;g) is-dag: is-dag(g) labeled-graph: LabeledGraph(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ─→ B[x] universe: Type
Lemmas :  lg-size-map less_than_transitivity1 lg-size_wf lg-map_wf nat_wf le_weakening lelt_wf lg-edge-map lg-edge_wf int_seg_wf member-less_than is-dag_wf labeled-graph_wf

Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  S].  \mforall{}[g:LabeledGraph(T)].    is-dag(lg-map(f;g))  supposing  is-dag(g)



Date html generated: 2015_07_23-AM-11_03_29
Last ObjectModification: 2015_01_28-PM-11_33_52

Home Index