Nuprl Lemma : lg-edge-map
∀[T,S:Type].  ∀f:T ─→ S. ∀g:LabeledGraph(T). ∀a,b:ℕlg-size(g).  (lg-edge(lg-map(f;g);a;b) 
⇐⇒ lg-edge(g;a;b))
Proof
Definitions occuring in Statement : 
lg-map: lg-map(f;g)
, 
lg-edge: lg-edge(g;a;b)
, 
lg-size: lg-size(g)
, 
labeled-graph: LabeledGraph(T)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
universe: Type
Lemmas : 
select-map, 
dep-isect-subtype, 
list_wf, 
top_wf, 
int_seg_wf, 
length_wf, 
length_wf_nat, 
select_wf, 
sq_stable__le, 
l_member_wf, 
lg-size_wf, 
nat_wf, 
labeled-graph_wf
Latex:
\mforall{}[T,S:Type].
    \mforall{}f:T  {}\mrightarrow{}  S.  \mforall{}g:LabeledGraph(T).  \mforall{}a,b:\mBbbN{}lg-size(g).    (lg-edge(lg-map(f;g);a;b)  \mLeftarrow{}{}\mRightarrow{}  lg-edge(g;a;b))
Date html generated:
2015_07_23-AM-11_03_27
Last ObjectModification:
2015_01_28-PM-11_34_43
Home
Index