Nuprl Lemma : dep-isect-subtype
∀A:Type. ∀B:A ⟶ Type.  (x:A ⋂ B[x] ⊆r A)
Proof
Definitions occuring in Statement : 
dep-isect: x:A ⋂ B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
dep-isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
lambdaEquality, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    (x:A  \mcap{}  B[x]  \msubseteq{}r  A)
Date html generated:
2016_05_15-PM-02_07_04
Last ObjectModification:
2015_12_27-AM-00_28_08
Theory : dependent!intersection
Home
Index