Nuprl Lemma : lg-map_wf
∀[T,S:Type]. ∀[f:T ─→ S]. ∀[g:LabeledGraph(T)]. (lg-map(f;g) ∈ LabeledGraph(S))
Proof
Definitions occuring in Statement :
lg-map: lg-map(f;g)
,
labeled-graph: LabeledGraph(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
universe: Type
Lemmas :
length_wf_nat,
top_wf,
dep-isect-subtype,
list_wf,
int_seg_wf,
length_wf,
map_wf,
nat_wf,
subtype_rel_list,
subtype_rel-int_seg,
false_wf,
non_neg_length,
map_length,
labeled-graph_wf
Latex:
\mforall{}[T,S:Type]. \mforall{}[f:T {}\mrightarrow{} S]. \mforall{}[g:LabeledGraph(T)]. (lg-map(f;g) \mmember{} LabeledGraph(S))
Date html generated:
2015_07_23-AM-11_03_24
Last ObjectModification:
2015_01_28-PM-11_34_06
Home
Index