Nuprl Lemma : lg-map_wf
∀[T,S:Type]. ∀[f:T ─→ S]. ∀[g:LabeledGraph(T)].  (lg-map(f;g) ∈ LabeledGraph(S))
Proof
Definitions occuring in Statement : 
lg-map: lg-map(f;g)
, 
labeled-graph: LabeledGraph(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
length_wf_nat, 
top_wf, 
dep-isect-subtype, 
list_wf, 
int_seg_wf, 
length_wf, 
map_wf, 
nat_wf, 
subtype_rel_list, 
subtype_rel-int_seg, 
false_wf, 
non_neg_length, 
map_length, 
labeled-graph_wf
Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  S].  \mforall{}[g:LabeledGraph(T)].    (lg-map(f;g)  \mmember{}  LabeledGraph(S))
Date html generated:
2015_07_23-AM-11_03_24
Last ObjectModification:
2015_01_28-PM-11_34_06
Home
Index