Nuprl Lemma : lg-all-map
∀[A,T:Type].  ∀f:A ─→ T. ∀[P:T ─→ ℙ]. ∀g:LabeledGraph(A). (∀x∈lg-map(f;g).P[x] 
⇐⇒ ∀x∈g.P[f x])
Proof
Definitions occuring in Statement : 
lg-all: ∀x∈G.P[x]
, 
lg-map: lg-map(f;g)
, 
labeled-graph: LabeledGraph(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
length-map-sq, 
dep-isect-subtype, 
list_wf, 
top_wf, 
int_seg_wf, 
length_wf, 
select-map, 
lelt_wf, 
lg-size_wf, 
select_wf, 
nat_wf, 
sq_stable__le, 
lg-all_wf, 
lg-map_wf, 
labeled-graph_wf
Latex:
\mforall{}[A,T:Type].    \mforall{}f:A  {}\mrightarrow{}  T.  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}g:LabeledGraph(A).  (\mforall{}x\mmember{}lg-map(f;g).P[x]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x\mmember{}g.P[f  x])
Date html generated:
2015_07_23-AM-11_04_49
Last ObjectModification:
2015_01_28-PM-11_35_10
Home
Index