Nuprl Lemma : sv-list-tail
∀[A:Type]. ∀[L:A List].  0 < ||L|| 
⇒ single-valued-list(tl(L);A) supposing single-valued-list(L;A)
Proof
Definitions occuring in Statement : 
single-valued-list: single-valued-list(L;T)
, 
tl: tl(l)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
universe: Type
Lemmas : 
l_member_wf, 
tl_wf, 
less_than_wf, 
length_wf, 
all_wf, 
list_wf, 
member_tl
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].    0  <  ||L||  {}\mRightarrow{}  single-valued-list(tl(L);A)  supposing  single-valued-list(L;A)
Date html generated:
2015_07_23-AM-11_26_01
Last ObjectModification:
2015_01_28-PM-11_15_08
Home
Index