Nuprl Lemma : sv-list-tail
∀[A:Type]. ∀[L:A List]. 0 < ||L||
⇒ single-valued-list(tl(L);A) supposing single-valued-list(L;A)
Proof
Definitions occuring in Statement :
single-valued-list: single-valued-list(L;T)
,
tl: tl(l)
,
length: ||as||
,
list: T List
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
natural_number: $n
,
universe: Type
Lemmas :
l_member_wf,
tl_wf,
less_than_wf,
length_wf,
all_wf,
list_wf,
member_tl
Latex:
\mforall{}[A:Type]. \mforall{}[L:A List]. 0 < ||L|| {}\mRightarrow{} single-valued-list(tl(L);A) supposing single-valued-list(L;A)
Date html generated:
2015_07_23-AM-11_26_01
Last ObjectModification:
2015_01_28-PM-11_15_08
Home
Index