Nuprl Lemma : acceptor_wf

[Op:LimitedType]. [self:Id].  (acceptor(Op;self)  EClass'(Message  Id))


Proof not projected




Definitions occuring in Statement :  acceptor: acceptor(Op;self) Message: Message eclass: EClass(A[eo; e]) Id: Id uall: [x:A]. B[x] member: t  T product: x:A  B[x] limited-type: LimitedType
Definitions :  refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] atom: Atom record-select: r.x dep-isect: Error :dep-isect,  token: "$token" es-base-E: es-base-E(es) tag-by: zT rev_implies: P  Q iff: P  Q ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record+: record+ record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-sub: f  g ma-state: State(ds) true: True squash: T event_ordering: EO label: ...$L... t class-program: ClassProgram(T) fpf-cap: f(x)?z bag: bag(T) es-E: E event-ordering+: EO+(Info) nil: [] it: decision: Decision void: Void deq: EqDecider(T) filter: filter(P;l) so_lambda: x.t[x] in-eclass: e  X so_apply: x[s] or: P  Q eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) false: False prop: bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q assert: b bnot: b unit: Unit bool: guard: {T} implies: P  Q sq_type: SQType(T) inl: inl x  msg2b: msg2b(self; b; c) int-deq: IntDeq update-alist: update-alist(eq;L;x;z;v.f[v]) eq_ballot: eq_ballot(b1;b2) ifthenelse: if b then t else f fi  spreadn: spread4 ballot-max: ballot-max(b1;b2) msg1b: msg1b(Op;self;b;accptd) apply: f a let: let decide: case b of inl(x) =s[x] | inr(y) =t[y] subtype: S  T es-E-interface: E(X) intensional-universe: IType lambda: x.A[x] top: Top fpf: a:A fp-B[a] atom: Atom$n set: {x:A| B[x]}  exists: x:A. B[x] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B spread: spread def union: left + right so_lambda: x y.t[x; y] inr: inr x  pair: <a, b> name: Name mData: mData universe: Type class1a: class1a() class2a: class2a(Op) es-interface-union: X+Y smr-class: smr-class(init;s,x.F[s; x];X) function: x:A  B[x] all: x:A. B[x] eclass: EClass(A[eo; e]) Message: Message acceptor: acceptor(Op;self) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] Id: Id member: t  T equal: s = t limited-type: LimitedType sm-command: sm-command(Op) ballot-id: ballot-id() product: x:A  B[x] int: list: type List
Lemmas :  sm-command_wf Id_wf ballot-id_wf es-interface-union_wf name_wf mData_wf class1a_wf class2a_wf eclass_wf Message_wf member_wf limited-type_wf smr-class_wf subtype_rel_wf intensional-universe_wf msg1b_wf ballot-max_wf ifthenelse_wf eq_ballot_wf bool_wf eqtt_to_assert assert_wf not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf update-alist_wf int-deq_wf msg2b_wf list-subtype l_member_wf it_wf es-interface-top eclass_wf3 eclass_wf2 es-E_wf event-ordering+_wf true_wf squash_wf event-ordering+_inc bag_wf subtype_rel_dep_function es-base-E_wf event_ordering_wf subtype_rel_record+ subtype_rel_self subtype_rel_function permutation_wf quotient_wf equiv_rel_wf trans_wf sym_wf refl_wf

\mforall{}[Op:LimitedType].  \mforall{}[self:Id].    (acceptor(Op;self)  \mmember{}  EClass'(Message  \mtimes{}  Id))


Date html generated: 2011_10_20-PM-04_23_56
Last ObjectModification: 2011_01_26-PM-06_33_46

Home Index