{ [Info:Type]
    es:EO+(Info). Sys:EClass(Top). f:sys-antecedent(es;Sys). b,e:E(Sys).
      (b is f*(e)
       e':E(Sys)
          ((loc(e') = loc(e))
           e' is f*(e)
           b is f*(e')
           ((loc(f e') = loc(e')))) 
         supposing (loc(b) = loc(e))) }

{ Proof }



Definitions occuring in Statement :  sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) Id: Id uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] not: A implies: P  Q and: P  Q apply: f a universe: Type equal: s = t fun-connected: y is f*(x)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q member: t  T nat: guard: {T} prop: so_lambda: x y.t[x; y] not: A false: False ge: i  j  le: A  B uimplies: b supposing a exists: x:A. B[x] and: P  Q cand: A c B squash: T true: True es-E-interface: E(X) assert: b btrue: tt ifthenelse: if b then t else f fi  strongwellfounded: SWellFounded(R[x; y]) so_apply: x[s1;s2] sys-antecedent: sys-antecedent(es;Sys) decidable: Dec(P) or: P  Q sq_stable: SqStable(P) es-causle: e c e' sq_type: SQType(T) subtype: S  T
Lemmas :  es-causl-swellfnd event-ordering+_inc nat_wf le_wf es-E-interface_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_wf es-causl_wf nat_properties ge_wf Id_wf es-loc_wf decidable__equal_Id es-E-interface-subtype_rel fun-connected_weakening_eq fun-connected_wf not_wf fun-connected-step-back fun-connected-fixedpoint sq_stable_from_decidable es-causle_wf decidable__es-causle subtype_base_sq bool_wf bool_subtype_base assert_wf in-eclass_wf assert_elim fun-connected-step decidable__equal_es-E-interface fun-connected_transitivity

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}Sys:EClass(Top).  \mforall{}f:sys-antecedent(es;Sys).  \mforall{}b,e:E(Sys).
        (b  is  f*(e)
        {}\mRightarrow{}  \mexists{}e':E(Sys).  ((loc(e')  =  loc(e))  \mwedge{}  e'  is  f*(e)  \mwedge{}  b  is  f*(e')  \mwedge{}  (\mneg{}(loc(f  e')  =  loc(e')))) 
              supposing  \mneg{}(loc(b)  =  loc(e)))


Date html generated: 2011_08_16-PM-06_02_38
Last ObjectModification: 2011_06_20-AM-01_45_57

Home Index