{ [A,B:Type]. [base:B]. [f:B  A  B]. [size:]. [num:A  ].
  [P:A  ].
    (collect_filter_accum_fun(b,v.f[b;v];base;size;v.num[v];v.P[v])
     {s:    B  ( + Top)| (isl(snd(snd(snd(s)))))  (1  (fst(s)))} 
       A
       {s:    B  ( + Top)| 
          (isl(snd(snd(snd(s)))))  (1  (fst(s)))} ) }

{ Proof }



Definitions occuring in Statement :  collect_filter_accum_fun: collect_filter_accum_fun(b,v.f[b; v];base;size;v.num[v];v.P[v]) isl: isl(x) assert: b bool: nat_plus: nat: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] pi1: fst(t) pi2: snd(t) le: A  B implies: P  Q member: t  T set: {x:A| B[x]}  function: x:A  B[x] product: x:A  B[x] union: left + right natural_number: $n int: universe: Type
Definitions :  uall: [x:A]. B[x] nat: member: t  T top: Top implies: P  Q assert: b isl: isl(x) pi2: snd(t) le: A  B pi1: fst(t) collect_filter_accum_fun: collect_filter_accum_fun(b,v.f[b; v];base;size;v.num[v];v.P[v]) so_apply: x[s1;s2] so_apply: x[s] spreadn: spread4 ifthenelse: if b then t else f fi  btrue: tt bfalse: ff has-value: has-value(a) all: x:A. B[x] prop: false: False so_lambda: x.t[x] subtype: S  T not: A nat_plus: bool: unit: Unit iff: P  Q and: P  Q uimplies: b supposing a it:
Lemmas :  rational-has-value int-rational nat_wf bool_wf lt_int_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert_of_lt_int false_wf isl_wf pi2_wf le_wf pi1_wf_top le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int assert_of_eq_int true_wf not_wf assert_of_bnot not_functionality_wrt_uiff nat_properties int_inc eq_int_wf btrue_wf bfalse_wf top_wf nat_plus_wf

\mforall{}[A,B:Type].  \mforall{}[base:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].  \mforall{}[size:\mBbbN{}\msupplus{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].
    (collect\_filter\_accum\_fun(b,v.f[b;v];base;size;v.num[v];v.P[v])  \mmember{}  \{s:\mBbbZ{}  \mtimes{}  \mBbbN{}  \mtimes{}  B  \mtimes{}  (\mBbbB{}  +  Top)| 
                                                                                                                                          (\muparrow{}isl(snd(snd(snd(s)))))
                                                                                                                                          {}\mRightarrow{}  (1  \mleq{}  (fst(s)))\} 
                                                                                                                                        {}\mrightarrow{}  A
                                                                                                                                        {}\mrightarrow{}  \{s:\mBbbZ{}  \mtimes{}  \mBbbN{}  \mtimes{}  B  \mtimes{}  (\mBbbB{}  +  Top)| 
                                                                                                                                                (\muparrow{}isl(snd(snd(snd(s)))))
                                                                                                                                                {}\mRightarrow{}  (1  \mleq{}  (fst(s)))\}  )


Date html generated: 2011_08_16-AM-11_05_01
Last ObjectModification: 2011_06_18-AM-09_37_38

Home Index