{ [Info,A:Type]. [X,Y:EClass(A)]. [es:EO+(Info)]. [e:E].
    [X?Y](e) = if e  X then X(e) else Y(e) fi  supposing e  [X?Y] }

{ Proof }



Definitions occuring in Statement :  cond-class: [X?Y] eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] universe: Type equal: s = t
Definitions :  decide: case b of inl(x) =s[x] | inr(y) =t[y] bag-only: only(bs) false: False lt_int: i <z j le_int: i z j bfalse: ff real: grp_car: |g| nat: limited-type: LimitedType btrue: tt null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit implies: P  Q eclass-compose2: eclass-compose2(f;X;Y) atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" void: Void subtype: S  T lambda: x.A[x] fpf-cap: f(x)?z union: left + right intensional-universe: IType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B fpf: a:A fp-B[a] top: Top all: x:A. B[x] bag: bag(T) function: x:A  B[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ set: {x:A| B[x]}  record-select: r.x pair: <a, b> bool: axiom: Ax in-eclass: e  X ifthenelse: if b then t else f fi  cond-class: [X?Y] eclass-val: X(e) prop: member: t  T universe: Type uall: [x:A]. B[x] so_lambda: x.t[x] uimplies: b supposing a isect: x:A. B[x] equal: s = t assert: b es-E: E event_ordering: EO event-ordering+: EO+(Info) so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  MaAuto: Error :MaAuto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor
Lemmas :  eclass_wf cond-class_wf top_wf in-eclass_wf assert_wf subtype_rel_wf member_wf es-E_wf event-ordering+_wf uall_wf intensional-universe_wf dep-eclass_subtype_rel event-ordering+_inc es-base-E_wf subtype_rel_self bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int bag-size_wf nat_wf bag_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf eq_int_wf bag-only_wf

\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    [X?Y](e)  =  if  e  \mmember{}\msubb{}  X  then  X(e)  else  Y(e)  fi    supposing  \muparrow{}e  \mmember{}\msubb{}  [X?Y]


Date html generated: 2011_08_16-AM-11_39_34
Last ObjectModification: 2011_06_20-AM-00_30_48

Home Index