{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:sys-antecedent(es;X)].
  [a,b:E(X)].
    a (X;f) b supposing a = b }

{ Proof }



Definitions occuring in Statement :  cut-order: a (X;f) b sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: b supposing a uall: [x:A]. B[x] top: Top universe: Type equal: s = t
Definitions :  union: left + right pair: <a, b> bool: fset-singleton: {x} es-eq: es-eq(es) apply: f a record: record(x.T[x]) record-select: r.x so_lambda: x.t[x] sq_type: SQType(T) subtype: S  T top: Top event_ordering: EO es-E: E lambda: x.A[x] limited-type: LimitedType strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B deq-member: deq-member(eq;x;L) es-cut: Cut(X;f) fset: FSet{T} cut-of: cut(X;f;s) implies: P  Q function: x:A  B[x] all: x:A. B[x] prop: universe: Type uimplies: b supposing a cut-order: a (X;f) b fset-member: a  s assert: b ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True equal: s = t false: False void: Void event-ordering+: EO+(Info) so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) sys-antecedent: sys-antecedent(es;Sys) uall: [x:A]. B[x] isect: x:A. B[x] member: t  T es-E-interface: E(X) f-subset: xs  ys deq: EqDecider(T) rev_implies: P  Q iff: P  Q fset-intersection: a  b fset-union: x  y fset-remove: fset-remove(eq;y;s) fset-add: fset-add(eq;x;s)
Lemmas :  iff_weakening_uiff member-fset-singleton es-eq_wf-interface cut-of-property es-E-interface_wf cut-of_wf fset-member_wf-cut fset-member_wf set_subtype_base assert_wf es-E_wf subtype_base_sq true_wf deq-member_wf ifthenelse_wf false_wf event-ordering+_wf event-ordering+_inc top_wf eclass_wf sys-antecedent_wf cut-order_wf cut-order_witness fset-singleton_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[a,b:E(X)].
    a  \mleq{}(X;f)  b  supposing  a  =  b


Date html generated: 2011_08_16-PM-05_51_01
Last ObjectModification: 2011_06_20-AM-01_36_22

Home Index