{ [es:EO]. [e,e':E].  e <loc e' ~ e' loc e supposing loc(e) = loc(e') }

{ Proof }



Definitions occuring in Statement :  es-ble: e loc e' es-bless: e <loc e' es-loc: loc(e) es-E: E event_ordering: EO Id: Id bnot: b uimplies: b supposing a uall: [x:A]. B[x] sqequal: s ~ t equal: s = t
Definitions :  or: P  Q es-le: e loc e'  void: Void apply: f a es-causl: (e < e') false: False lt_int: i <z j le_int: i z j bfalse: ff btrue: tt es-locl: (e <loc e') iff: P  Q bimplies: p  q band: p  q bor: p q int: unit: Unit union: left + right limited-type: LimitedType pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) assert: b eq_atom: x =a y eq_atom: eq_atom$n(x;y) record-select: r.x infix_ap: x f y set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) bnot: b guard: {T} implies: P  Q es-loc: loc(e) universe: Type sq_type: SQType(T) bool: subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] event_ordering: EO Id: Id prop: equal: s = t sqequal: s ~ t uall: [x:A]. B[x] es-E: E uimplies: b supposing a isect: x:A. B[x] member: t  T Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  es-ble: e loc e' es-bless: e <loc e' rev_implies: P  Q D: Error :D
Lemmas :  es-le-not-locl bfalse_wf bool_wf bnot_wf btrue_wf es-bless_wf assert_wf not_wf es-locl_wf assert-es-bless not_functionality_wrt_iff assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert eqtt_to_assert event_ordering_wf es-E_wf es-loc_wf Id_wf bool_subtype_base subtype_base_sq es-le_wf assert-es-ble es-ble_wf es-locl_transitivity2 es-locl_irreflexivity

\mforall{}[es:EO].  \mforall{}[e,e':E].    e  <loc  e'  \msim{}  \mneg{}\msubb{}e'  \mleq{}loc  e  supposing  loc(e)  =  loc(e')


Date html generated: 2011_08_16-AM-10_35_11
Last ObjectModification: 2011_06_18-AM-09_15_22

Home Index