{ [Info:Type]
    es:EO+(Info). X:EClass(Top). u:E(X). v:E(X) List.
      e:E(X). ((e  [u / v])  (e':E(X). ((e'  [u / v])  ((e < e'))))) }

{ Proof }



Definitions occuring in Statement :  es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-causl: (e < e') uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] not: A implies: P  Q and: P  Q cons: [car / cdr] list: type List universe: Type l_member: (x  l)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] member: t  T so_lambda: x y.t[x; y] exists: x:A. B[x] and: P  Q implies: P  Q not: A cand: A c B or: P  Q prop: label: ...$L... t top: Top select: l[i] int_seg: {i..j} length: ||as|| ycomb: Y lelt: i  j < k le: A  B false: False subtype: S  T ifthenelse: if b then t else f fi  le_int: i z j bnot: b lt_int: i <z j btrue: tt bfalse: ff iff: P  Q rev_implies: P  Q guard: {T} so_apply: x[s1;s2] es-E-interface: E(X) uimplies: b supposing a decidable: Dec(P)
Lemmas :  es-E-interface_wf eclass_wf top_wf es-E_wf event-ordering+_wf cons_member l_member_wf member_singleton es-causl_transitivity2 event-ordering+_inc es-causle_weakening_eq es-causl_irreflexivity es-causl_wf not_wf es-causle_wf decidable__es-causl select_member length_wf1 non_neg_length length_wf_nat le_wf decidable__l_member decidable__equal_es-E-interface es-causle_weakening not_functionality_wrt_iff iff_transitivity or_functionality_wrt_iff

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}u:E(X).  \mforall{}v:E(X)  List.
        \mexists{}e:E(X).  ((e  \mmember{}  [u  /  v])  \mwedge{}  (\mforall{}e':E(X).  ((e'  \mmember{}  [u  /  v])  {}\mRightarrow{}  (\mneg{}(e  <  e')))))


Date html generated: 2011_08_16-PM-05_45_38
Last ObjectModification: 2011_06_20-AM-01_32_58

Home Index