{ [Info,A:Type]. [X:EClass(A)]. [P:{L:A List| 0 < ||L||}   ].
  [num:A  ].
    (Collect(X;x.num[x];L.P[L])
     EClass(  {L:A List| (0 < ||L||)  (P[L])} )) }

{ Proof }



Definitions occuring in Statement :  es-collect: Collect(X;x.num[x];L.P[L]) eclass: EClass(A[eo; e]) length: ||as|| assert: b bool: nat: uall: [x:A]. B[x] so_apply: x[s] and: P  Q member: t  T less_than: a < b set: {x:A| B[x]}  function: x:A  B[x] product: x:A  B[x] list: type List natural_number: $n universe: Type
Definitions :  bfalse: ff guard: {T} decide_bfalse: decide_bfalse{decide_bfalse_compseq_tag_def:o}(v11.g[v11]; v21.f[v21]) label: ...$L... t null: null(as) p-outcome: Outcome real: rationals: proper-iseg: L1 < L2 iseg: l1  l2 add: n + m l_exists: (xL. P[x]) rev_implies: P  Q iff: P  Q sqequal: s ~ t false: False multiply: n * m gt: i > j or: P  Q map: map(f;as) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  l_member: (x  l) void: Void cand: A c B prop: bag: bag(T) pi1: fst(t) pi2: snd(t) isl: isl(x) union: left + right implies: P  Q int: inr: inr x  top: Top fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B collect_filter: collect_filter() nil: [] minus: -n pair: <a, b> so_lambda: x.t[x] collect_accm: collect_accm(v.P[v];v.num[v]) es-interface-accum: es-interface-accum(f;x;X) es-filter-image: f[X] subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] all: x:A. B[x] axiom: Ax es-collect: Collect(X;x.num[x];L.P[L]) apply: f a so_apply: x[s] assert: b length: ||as|| natural_number: $n and: P  Q product: x:A  B[x] equal: s = t universe: Type so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) bool: set: {x:A| B[x]}  less_than: a < b list: type List uall: [x:A]. B[x] nat: function: x:A  B[x] isect: x:A. B[x] member: t  T MaAuto: Error :MaAuto,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  assert_wf length_wf1 top_wf not_wf pi2_wf isl_wf es-filter-image_wf le_wf nat_wf es-interface-accum_wf collect_filter-wf2 collect_accm-wf2 eclass_wf member_wf event-ordering+_wf event-ordering+_inc es-E_wf bool_wf pi1_wf_top pos_length2 length_wf_nat subtype_rel_wf pos-length false_wf equal-nil-sq-nil non_neg_length bag_wf es-interface-top length_nil length_wf2 bfalse_wf

\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[P:\{L:A  List|  0  <  ||L||\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].
    (Collect(X;x.num[x];L.P[L])  \mmember{}  EClass(\mBbbN{}  \mtimes{}  \{L:A  List|  (0  <  ||L||)  \mwedge{}  (\muparrow{}P[L])\}  ))


Date html generated: 2011_08_16-PM-05_26_07
Last ObjectModification: 2011_06_20-AM-01_23_43

Home Index