{ [Info:Type]
    es:EO+(Info). X:EClass(Top). f:sys-antecedent(es;X). s:FSet{E(X)}.
      c:Cut(X;f). (s  c  ([c':Cut(X;f)]. c  c' supposing s  c')) }

{ Proof }



Definitions occuring in Statement :  es-cut: Cut(X;f) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-eq: es-eq(es) uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] and: P  Q universe: Type fset: FSet{s} f-subset: xs  ys
Definitions :  fset-union: x  y so_apply: x[s] or: P  Q guard: {T} l_member: (x  l) void: Void false: False true: True apply: f a es-causle: e c e' implies: P  Q cand: A c B fpf: a:A fp-B[a] decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b fset-member: a  s tl: tl(l) hd: hd(l) l_all: (xL.P[x]) set-equal: set-equal(T;x;y) prop: fset-closed: (s closed under fs) fset-closure: (c = fs closure of s) es-eq: es-eq(es) list: type List union: left + right subtype: S  T top: Top event_ordering: EO es-E: E lambda: x.A[x] equal: s = t member: t  T strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) quotient: x,y:A//B[x; y] dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) subtype_rel: A r B so_lambda: x y.t[x; y] all: x:A. B[x] function: x:A  B[x] es-E-interface: E(X) es-cut: Cut(X;f) set: {x:A| B[x]}  fset: FSet{T} sys-antecedent: sys-antecedent(es;Sys) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) universe: Type exists: x:A. B[x] and: P  Q product: x:A  B[x] uall: [x:A]. B[x] so_lambda: x.t[x] uimplies: b supposing a isect: x:A. B[x] f-subset: xs  ys nil: [] es-interface-pred: X-pred cons: [car / cdr] l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i infix_ap: x f y es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) decidable: Dec(P) iff: P  Q uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y squash: T fpf-sub: f  g modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) partitions: partitions(I;p) sq_stable: SqStable(P) i-member: r  I
Lemmas :  sq_stable_from_decidable decidable__fset-closed es-cut_wf f-subset_wf es-E-interface_wf uall_wf sys-antecedent_wf es-interface-pred_wf sys-antecedent-closure event-ordering+_wf event-ordering+_inc es-E_wf top_wf eclass_wf fset_wf member_wf set-equal_wf subtype_rel_wf es-eq_wf-interface fset-closed_wf es-interface-pred_wf2 fset-member_wf fset-member_witness uiff_inversion l_all_wf l_member_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).  \mforall{}s:FSet\{E(X)\}.
        \mexists{}c:Cut(X;f).  (s  \msubseteq{}  c  \mwedge{}  (\mforall{}[c':Cut(X;f)].  c  \msubseteq{}  c'  supposing  s  \msubseteq{}  c'))


Date html generated: 2011_08_16-PM-05_46_19
Last ObjectModification: 2011_06_20-AM-01_33_36

Home Index