{ [da:k:Knd fp-Type]. [l:IdLnk]. [tg:Id]. [T:Top].
    (dt(l;da)(tg)?T ~ da(rcv(l,tg))?T) }

{ Proof }



Definitions occuring in Statement :  es-dt: dt(l;da) fpf-cap: f(x)?z fpf: a:A fp-B[a] Kind-deq: KindDeq id-deq: IdDeq rcv: rcv(l,tg) Knd: Knd IdLnk: IdLnk Id: Id uall: [x:A]. B[x] top: Top universe: Type sqequal: s ~ t
Definitions :  member: t  T so_lambda: x.t[x] fpf-cap: f(x)?z iff: P  Q rev_implies: P  Q prop: implies: P  Q and: P  Q bfalse: ff ifthenelse: if b then t else f fi  all: x:A. B[x] btrue: tt squash: T true: True es-dt: dt(l;da) exists: x:A. B[x] assert: b cand: A c B isl: isl(x) outl: outl(x) rcv: rcv(l,tg) isrcv: isrcv(k) lnk: lnk(k) tagof: tag(k) pi1: fst(t) pi2: snd(t) fpf-ap: f(x) compose-fpf: compose-fpf(a;b;f) compose: f o g uall: [x:A]. B[x] so_apply: x[s] sq_type: SQType(T) uimplies: b supposing a guard: {T} unit: Unit bool: not: A false: False or: P  Q Knd: Knd fpf: a:A fp-B[a] it:
Lemmas :  top_wf Id_wf IdLnk_wf fpf_wf Knd_wf subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool fpf-dom_wf id-deq_wf es-dt_wf fpf-trivial-subtype-top Kind-deq_wf rcv_wf iff_functionality_wrt_iff assert_wf l_member_wf fpf-domain_wf member-fpf-domain compose-fpf-dom isrcv_wf ifthenelse_wf eq_lnk_wf lnk_wf unit_wf tagof_wf it_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bool_cases assert-eq-lnk not_functionality_wrt_uiff squash_wf true_wf false_wf

\mforall{}[da:k:Knd  fp->  Type].  \mforall{}[l:IdLnk].  \mforall{}[tg:Id].  \mforall{}[T:Top].    (dt(l;da)(tg)?T  \msim{}  da(rcv(l,tg))?T)


Date html generated: 2011_08_10-AM-08_12_46
Last ObjectModification: 2011_06_18-AM-08_27_45

Home Index