{ [Info:Type]. [es:EO+(Info)]. [A,B:EClass(Top)]. [e:E].
    oob-getright((A | B)(e)) ~ B(e) supposing e  B }

{ Proof }



Definitions occuring in Statement :  es-interface-or: (X | Y) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top universe: Type sqequal: s ~ t oob-getright: oob-getright(x)
Definitions :  one_or_both_ind_oobright: Error :one_or_both_ind_oobright_compseq_tag_def,  one_or_both_ind_oobboth: Error :one_or_both_ind_oobboth_compseq_tag_def,  oobboth-bval: Error :oobboth-bval,  oobright-rval: Error :oobright-rval,  oobright?: Error :oobright?,  true: True bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) oobright: Error :oobright,  empty-bag: {} strong-subtype: strong-subtype(A;B) decide: case b of inl(x) =s[x] | inr(y) =t[y] le: A  B ge: i  j  less_than: a < b exists: x:A. B[x] void: Void so_lambda: x.t[x] sq_type: SQType(T) one_or_both: Error :one_or_both,  pair: <a, b> oobboth: Error :oobboth,  oobleft: Error :oobleft,  single-bag: {x} bag-only: only(bs) false: False lt_int: i <z j le_int: i z j bfalse: ff real: grp_car: |g| nat: limited-type: LimitedType btrue: tt product: x:A  B[x] and: P  Q uiff: uiff(P;Q) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit union: left + right bool: oob-apply: oob-apply(xs;ys) eclass-compose2: eclass-compose2(f;X;Y) implies: P  Q lambda: x.A[x] subtype: S  T subtype_rel: A r B atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  es-interface-or: (X | Y) eclass-val: X(e) oob-getright: oob-getright(x) all: x:A. B[x] in-eclass: e  X dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ bag: bag(T) function: x:A  B[x] set: {x:A| B[x]}  record-select: r.x top: Top equal: s = t prop: assert: b universe: Type sqequal: s ~ t so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] event-ordering+: EO+(Info) event_ordering: EO es-E: E uimplies: b supposing a isect: x:A. B[x] member: t  T Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  RepUR: Error :RepUR,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  event-ordering+_wf eclass_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf top_wf in-eclass_wf assert_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int bag-size_wf nat_wf bag_wf member_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf eq_int_wf bag-only_wf Error :oobboth_wf,  Error :one_or_both_wf,  single-bag_wf ifthenelse_wf oob-getright_wf subtype_base_sq isect_subtype_base true_wf false_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,B:EClass(Top)].  \mforall{}[e:E].
    oob-getright((A  |  B)(e))  \msim{}  B(e)  supposing  \muparrow{}e  \mmember{}\msubb{}  B


Date html generated: 2011_08_16-PM-04_25_00
Last ObjectModification: 2011_06_20-AM-00_49_54

Home Index