{ [Info:Type]. [es:EO+(Info)]. [X:EClass()]. [e:E].
    (e(X) = if e  le(X) then le(X)(e)(X) else 0 fi ) }

{ Proof }



Definitions occuring in Statement :  es-interface-sum: e(X) es-le-interface: le(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E ifthenelse: if b then t else f fi  uall: [x:A]. B[x] natural_number: $n int: universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] member: t  T all: x:A. B[x] so_lambda: x y.t[x; y] top: Top prop: ifthenelse: if b then t else f fi  implies: P  Q btrue: tt bfalse: ff rev_implies: P  Q iff: P  Q and: P  Q es-E-interface: E(X) guard: {T} or: P  Q so_apply: x[s1;s2] uimplies: b supposing a bool: unit: Unit not: A false: False subtype: S  T it:
Lemmas :  es-E_wf event-ordering+_inc eclass_wf event-ordering+_wf in-eclass_wf es-le-interface_wf es-interface-subtype_rel2 es-E-interface_wf es-interface-top top_wf bool_wf assert_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot es-le-interface-val-cases es-interface-sum_wf es-interface-sum-cases es-is-le-interface-iff es-prior-interface_wf eclass-val_wf2

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(\mBbbZ{})].  \mforall{}[e:E].
    (\mSigma{}\mleq{}e(X)  =  if  e  \mmember{}\msubb{}  le(X)  then  \mSigma{}\mleq{}le(X)(e)(X)  else  0  fi  )


Date html generated: 2011_08_16-PM-06_05_45
Last ObjectModification: 2011_06_20-AM-01_47_34

Home Index