{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [e:E].
    (le(X)(e) ~ if e  X then e else prior(X)(e) fi ) }

{ Proof }



Definitions occuring in Statement :  es-le-interface: le(X) es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E ifthenelse: if b then t else f fi  uall: [x:A]. B[x] top: Top universe: Type sqequal: s ~ t
Definitions :  sqequal: s ~ t subtype: S  T top: Top event_ordering: EO es-E: E lambda: x.A[x] event-ordering+: EO+(Info) universe: Type eclass: EClass(A[eo; e]) all: x:A. B[x] function: x:A  B[x] member: t  T equal: s = t so_lambda: x y.t[x; y] uall: [x:A]. B[x] isect: x:A. B[x] Repeat: Error :Repeat,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  es-le: e loc e'  es-p-le: e p e' es-causle: e c e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) record: record(x.T[x]) atom: Atom token: "$token" inl: inl x  es-pred: pred(e) es-first: first(e) strong-subtype: strong-subtype(A;B) dep-isect: Error :dep-isect,  record+: record+ record-select: r.x so_lambda: x.t[x] sq_type: SQType(T) uimplies: b supposing a es-locl: (e <loc e') sq_exists: x:{A| B[x]} or: P  Q inr: inr x  outl: outl(x) subtype_rel: A r B bfalse: ff decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  btrue: tt uiff: uiff(P;Q) and: P  Q iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q isl: isl(x) assert: b bnot: b unit: Unit union: left + right bool: true: True squash: T es-causl: (e < e') apply: f a limited-type: LimitedType real: grp_car: |g| minus: -n add: n + m subtract: n - m void: Void false: False not: A natural_number: $n prop: le: A  B ge: i  j  int: set: {x:A| B[x]}  less_than: a < b nat: implies: P  Q product: x:A  B[x] exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) es-local-pred: last(P) do-apply: do-apply(f;x) can-apply: can-apply(f;x) es-local-le-pred: (P) eclass-val: X(e) in-eclass: e  X local-pred-class: local-pred-class(P) es-prior-interface: prior(X) es-le-interface: le(X) MaAuto: Error :MaAuto,  Try: Error :Try,  THENM: Error :THENM,  RepeatFor: Error :RepeatFor,  Unfold: Error :Unfold,  Auto: Error :Auto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  nat_wf ge_wf nat_properties es-causl-swellfnd le_wf member_wf es-causl_wf bool_wf assert_wf iff_weakening_uiff eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf isl_wf es-local-pred_wf es-locl_wf ifthenelse_wf outl_wf subtype_base_sq set_subtype_base union_subtype_base es-first_wf es-pred_wf subtype_rel_self es-pred-causl eclass_wf event-ordering+_wf top_wf es-E_wf event-ordering+_inc

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    (le(X)(e)  \msim{}  if  e  \mmember{}\msubb{}  X  then  e  else  prior(X)(e)  fi  )


Date html generated: 2011_08_16-PM-04_48_57
Last ObjectModification: 2011_06_20-AM-01_07_33

Home Index