{ [Info:Type]. [es:EO+(Info)]. [X:EClass()].
    [e:E]. (0  e(X)) supposing e:E(X). (0  X(e)) }

{ Proof }



Definitions occuring in Statement :  es-interface-sum: e(X) es-E-interface: E(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uimplies: b supposing a uall: [x:A]. B[x] le: A  B all: x:A. B[x] natural_number: $n int: universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a all: x:A. B[x] le: A  B es-interface-sum: e(X) member: t  T es-interface-local-state: local-state(f;base;X;e) ifthenelse: if b then t else f fi  not: A implies: P  Q false: False prop: assert: b so_lambda: x y.t[x; y] btrue: tt true: True so_lambda: x.t[x] bfalse: ff es-E-interface: E(X) so_apply: x[s1;s2] sq_type: SQType(T) guard: {T} so_apply: x[s] bool: unit: Unit iff: P  Q and: P  Q subtype: S  T it:
Lemmas :  es-interface-sum_wf es-E_wf es-E-interface_wf le_wf eclass-val_wf event-ordering+_wf subtype_base_sq bool_subtype_base event-ordering+_inc bool_wf eclass_wf assert_elim in-eclass_wf es-local-prior-state-induction es-locl_wf es-interface-top assert_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(\mBbbZ{})].    \mforall{}[e:E].  (0  \mleq{}  \mSigma{}\mleq{}e(X))  supposing  \mforall{}e:E(X).  (0  \mleq{}  X(e))


Date html generated: 2011_08_16-PM-05_34_52
Last ObjectModification: 2011_06_20-AM-01_27_45

Home Index