{ [Info:Type]. [es:EO+(Info)]. [X,Y:EClass(Top)].
    ([e:E]. uiff(e  prior(X);e  prior(Y)))
     ([e:E]. prior(Y)(e) = prior(X)(e) supposing e  prior(X)) 
    supposing e:E. (e  X  e  Y) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uiff: uiff(P;Q) uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: P  Q and: P  Q universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] top: Top uimplies: b supposing a all: x:A. B[x] iff: P  Q and: P  Q uiff: uiff(P;Q) member: t  T cand: A c B implies: P  Q exists: x:A. B[x] rev_implies: P  Q prop: so_lambda: x y.t[x; y] or: P  Q so_apply: x[s1;s2] subtype: S  T guard: {T}
Lemmas :  is-prior-interface es-locl_wf assert_wf in-eclass_wf assert_witness es-prior-interface_wf es-interface-subtype_rel2 es-E-interface_wf es-E_wf event-ordering+_inc event-ordering+_wf top_wf iff_wf eclass_wf es-prior-interface-equal eclass-val_wf2 es-E-interface-subtype_rel

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    (\mforall{}[e:E].  uiff(\muparrow{}e  \mmember{}\msubb{}  prior(X);\muparrow{}e  \mmember{}\msubb{}  prior(Y)))
    \mwedge{}  (\mforall{}[e:E].  prior(Y)(e)  =  prior(X)(e)  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)) 
    supposing  \mforall{}e:E.  (\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y)


Date html generated: 2011_08_16-PM-04_47_25
Last ObjectModification: 2011_06_20-AM-01_05_18

Home Index