{ [Info:Type]. [es:EO+(Info)]. [X,Y:EClass(Top)]. [e:E].
    (prior(X)(e) = prior(Y)(e)) supposing 
       ((e':E
           (((prior(X)(e) <loc e')  (prior(Y)(e) <loc e'))
            (e' <loc e)
            (e'  X  e'  Y))) and 
       (e  prior(X)) and 
       (e  prior(Y))) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: P  Q implies: P  Q or: P  Q universe: Type equal: s = t
Definitions :  void: Void infix_ap: x f y es-causl: (e < e') es-loc: loc(e) Id: Id intensional-universe: IType rev_implies: P  Q record: record(x.T[x]) atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" pair: <a, b> bool: axiom: Ax eclass-val: X(e) union: left + right or: P  Q es-locl: (e <loc e') iff: P  Q implies: P  Q fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) set: {x:A| B[x]}  subtype_rel: A r B es-E-interface: E(X) es-prior-interface: prior(X) in-eclass: e  X prop: assert: b uimplies: b supposing a subtype: S  T top: Top event_ordering: EO es-E: E lambda: x.A[x] event-ordering+: EO+(Info) universe: Type eclass: EClass(A[eo; e]) all: x:A. B[x] function: x:A  B[x] member: t  T equal: s = t so_lambda: x y.t[x; y] uall: [x:A]. B[x] isect: x:A. B[x] MaAuto: Error :MaAuto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic,  CollapseTHEN: Error :CollapseTHEN,  false: False cand: A c B inr: inr x  inl: inl x  bfalse: ff unit: Unit true: True btrue: tt guard: {T}
Lemmas :  rev_implies_wf not_functionality_wrt_iff btrue_wf true_wf bool_wf bfalse_wf false_wf unit_wf es-locl-total es-prior-interface-val es-E-interface_wf eclass-val_wf2 es-prior-interface_wf assert_wf eclass-val_wf subtype_rel_self es-base-E_wf es-locl_wf es-E_wf iff_wf subtype_rel_wf eclass_wf member_wf es-prior-interface_wf1 top_wf es-prior-interface_wf0 in-eclass_wf event-ordering+_inc event-ordering+_wf intensional-universe_wf Id_wf es-loc_wf es-causl_wf es-E-interface-subtype_rel es-interface-subtype_rel2

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].  \mforall{}[e:E].
    (prior(X)(e)  =  prior(Y)(e))  supposing 
          ((\mforall{}e':E
                  (((prior(X)(e)  <loc  e')  \mvee{}  (prior(Y)(e)  <loc  e'))
                  {}\mRightarrow{}  (e'  <loc  e)
                  {}\mRightarrow{}  (\muparrow{}e'  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e'  \mmember{}\msubb{}  Y)))  and 
          (\muparrow{}e  \mmember{}\msubb{}  prior(X))  and 
          (\muparrow{}e  \mmember{}\msubb{}  prior(Y)))


Date html generated: 2011_08_16-PM-04_47_17
Last ObjectModification: 2011_06_20-AM-01_05_11

Home Index