{ [es:EO]. [T:Type]. [e:E]. [f:{e':E| e' loc e }   (T + Top)].
    (es-search-back(es;x.f[x];e)  T + Top) }

{ Proof }



Definitions occuring in Statement :  es-search-back: es-search-back(es;x.f[x];e) es-le: e loc e'  es-E: E event_ordering: EO uall: [x:A]. B[x] top: Top so_apply: x[s] member: t  T set: {x:A| B[x]}  function: x:A  B[x] union: left + right universe: Type
Definitions :  proper-iseg: L1 < L2 iseg: l1  l2 gt: i > j length: ||as|| eq_knd: a = b fpf-dom: x  dom(f) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  natural_number: $n outl: outl(x) isl: isl(x) bool: implies: P  Q guard: {T} l_member: (x  l) assert: b es-locl: (e <loc e') or: P  Q subtype: S  T unit: Unit fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) infix_ap: x f y record-select: r.x dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B uimplies: b supposing a gensearch: gensearch(f;g;x) prop: all: x:A. B[x] event_ordering: EO universe: Type uall: [x:A]. B[x] function: x:A  B[x] isect: x:A. B[x] member: t  T top: Top es-search-back: es-search-back(es;x.f[x];e) apply: f a axiom: Ax equal: s = t union: left + right MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  es-pred?: es-pred?(es;e) lambda: x.A[x] so_apply: x[s] es-rank: es-rank(es;e) es-le: e loc e'  es-E: E set: {x:A| B[x]}  tactic: Error :tactic,  void: Void inr: inr x  inl: inl x  Auto: Error :Auto,  D: Error :D,  es-first: first(e) iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bnot: b bor: p q false: False true: True es-loc: loc(e) Id: Id es-causl: (e < e') es-causle: e c e' pair: <a, b> es-pred: pred(e) limited-type: LimitedType record: record(x.T[x])
Lemmas :  es-rank_property es-pred-causl outl_wf ifthenelse_wf true_wf Id_wf es-causl_wf es-causle-le es-pred_wf es-pred-locl es-locl_transitivity2 es-le_weakening es-first_wf iff_weakening_uiff assert_of_bnot bnot_wf not_wf false_wf es-le_wf es-E_wf member_wf top_wf unit_wf es-pred?_wf es-rank_wf gensearch_wf event_ordering_wf es-locl_wf subtype_rel_wf uiff_inversion assert_wf isl_wf

\mforall{}[es:EO].  \mforall{}[T:Type].  \mforall{}[e:E].  \mforall{}[f:\{e':E|  e'  \mleq{}loc  e  \}    {}\mrightarrow{}  (T  +  Top)].
    (es-search-back(es;x.f[x];e)  \mmember{}  T  +  Top)


Date html generated: 2011_08_16-AM-10_36_43
Last ObjectModification: 2010_11_19-AM-11_47_27

Home Index