{ [Info,A:Type]. [X:EClass(A)]. [S:Type]. [init:S]. [f:S  A  S].
  [test:S  A  ]. [nxt:S  A  S].
    (Threshold(init;f;test;nxt;X)  EClass(S  A)) }

{ Proof }



Definitions occuring in Statement :  es-threshold: Threshold(init;f;test;nxt;X) eclass: EClass(A[eo; e]) bool: uall: [x:A]. B[x] member: t  T function: x:A  B[x] product: x:A  B[x] universe: Type
Definitions :  Id: Id void: Void cond-class: [X?Y] so_apply: x[s] guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) limited-type: LimitedType bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit es-prior-interface: prior(X) exists: x:A. B[x] es-interface-at: X@i intensional-universe: IType tag-by: zT rev_implies: P  Q or: P  Q iff: P  Q fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-cap: f(x)?z union: left + right record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) atom: Atom es-base-E: es-base-E(es) token: "$token" true: True false: False implies: P  Q es-E-interface: E(X) permutation: permutation(T;L1;L2) list: type List quotient: x,y:A//B[x; y] so_lambda: x.t[x] infix_ap: x f y es-causl: (e < e') fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B prop: subtype: S  T dep-isect: Error :dep-isect,  record+: record+ top: Top bag: bag(T) es-locl: (e <loc e') set: {x:A| B[x]}  event_ordering: EO es-E: E event-ordering+: EO+(Info) so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) all: x:A. B[x] axiom: Ax es-prior-interval-vals: X(e1, e2) eclass-val: X(e) es-prior-interface-vals: X(<e) list_accum: list_accum(x,a.f[x; a];y;l) empty-bag: {} pair: <a, b> single-bag: {x} lambda: x.A[x] apply: f a let: let in-eclass: e  X ifthenelse: if b then t else f fi  es-rec-class: es-rec-class product: x:A  B[x] bool: es-threshold: Threshold(init;f;test;nxt;X) equal: s = t so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) universe: Type uall: [x:A]. B[x] isect: x:A. B[x] member: t  T function: x:A  B[x] MaAuto: Error :MaAuto,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  ifthenelse_wf bag_wf single-bag_wf eclass-val_wf list_accum_wf es-prior-interface-vals_wf member_wf es-interface-top subtype_rel_wf eclass_wf es-locl_wf es-prior-interval-vals_wf in-eclass_wf event-ordering+_wf event-ordering+_inc es-E_wf empty-bag_wf es-rec-class_wf bool_wf uall_wf permutation_wf assert_wf false_wf true_wf es-base-E_wf subtype_rel_self es-interface-val_wf2 es-E-interface_wf es-interface-val_wf sq_stable__assert intensional-universe_wf eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf

\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[S:Type].  \mforall{}[init:S].  \mforall{}[f:S  {}\mrightarrow{}  A  {}\mrightarrow{}  S].  \mforall{}[test:S  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].
\mforall{}[nxt:S  \mtimes{}  A  {}\mrightarrow{}  S].
    (Threshold(init;f;test;nxt;X)  \mmember{}  EClass(S  \mtimes{}  A))


Date html generated: 2011_08_16-PM-05_10_53
Last ObjectModification: 2011_06_20-AM-01_13_15

Home Index