{ [env:E#Env]. [F:Atom]. [r:{dv:ClassDerivation| WF(dv)}  List].
    (esharp-comb-wf(env;F;r)  ') }

{ Proof }



Definitions occuring in Statement :  esharp-comb-wf: esharp-comb-wf(env;F;ra) esharp-env: E#Env cdv-wf: WF(dv) classderiv: ClassDerivation uall: [x:A]. B[x] prop: member: t  T set: {x:A| B[x]}  list: type List atom: Atom
Definitions :  bool: nat: inr: inr x  inl: inl x  lambda: x.A[x] map: map(f;as) apply: f a add: n + m spreadn: spread6 false: False decide: case b of inl(x) =s[x] | inr(y) =t[y] hd: hd(l) atom-deq: AtomDeq implies: P  Q unit: Unit apply-alist: apply-alist(eq;L;x) natural_number: $n cdv-types: cdv-types(dv) length: ||as|| eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] esharp-env: E#Env base-deriv: BaseDef union: left + right combinator-def: CombinatorDef and: P  Q product: x:A  B[x] int: atom: Atom uall: [x:A]. B[x] set: {x:A| B[x]}  cdv-wf: WF(dv) classderiv: ClassDerivation list: type List isect: x:A. B[x] member: t  T universe: Type esharp-comb-wf: esharp-comb-wf(env;F;ra) axiom: Ax equal: s = t prop: RepUR: Error :RepUR,  D: Error :D,  RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  Complete: Error :Complete,  Try: Error :Try,  Unfold: Error :Unfold,  top: Top sqequal: s ~ t qless: r < s nequal: a  b  T  nil: [] rationals: rec: rec(x.A[x]) pi2: snd(t) ycomb: Y so_apply: x[s] or: P  Q guard: {T} pi1: fst(t) filter: filter(P;l) l_member: (x  l) intensional-universe: IType classderiv_ind: classderiv_ind void: Void assert: b listp: A List combination: Combination(n;T) real: grp_car: |g| subtype: S  T cand: A c B empty-bag: {} ifthenelse: if b then t else f fi  select: l[i] bag: bag(T) int_seg: {i..j} pair: <a, b> limited-type: LimitedType CollapseTHENA: Error :CollapseTHENA,  sq_type: SQType(T) HypSubst: Error :HypSubst,  tactic: Error :tactic
Lemmas :  subtype_base_sq list_subtype_base nat_wf top_wf cdv-types-non-empty map_wf hd_wf length_wf_nat listp_wf map_wf_listp nat_properties subtype_rel_wf intensional-universe_wf list-subtype l_member_wf intensional-universe_wf2 ge_wf le_wf not_wf pos_length3 pos_length length-map member_wf false_wf unit_wf classderiv_wf cdv-wf_wf combinator-def_wf base-deriv_wf cdv-types_wf length_wf1 atom-deq_wf apply-alist_wf

\mforall{}[env:E\#Env].  \mforall{}[F:Atom].  \mforall{}[r:\{dv:ClassDerivation|  WF(dv)\}    List].    (esharp-comb-wf(env;F;r)  \mmember{}  \mBbbP{}')


Date html generated: 2011_08_17-PM-04_32_02
Last ObjectModification: 2011_06_18-AM-11_43_16

Home Index