{ [A:Type]
    eq:EqDecider(A)
      [P:x:A  Type  ]
        f,g:x:A fp-Type.
          (ydom(f). w=f(y)   P[y;w]
           ydom(g). w=g(y)   P[y;w]
           ydom(f  g). w=f  g(y)   P[y;w]) }

{ Proof }



Definitions occuring in Statement :  fpf-all: xdom(f). v=f(x)   P[x; v] fpf-join: f  g fpf: a:A fp-B[a] uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies: P  Q function: x:A  B[x] universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] prop: implies: P  Q fpf-all: xdom(f). v=f(x)   P[x; v] so_apply: x[s1;s2] member: t  T top: Top so_lambda: x.t[x] so_lambda: x y.t[x; y] ifthenelse: if b then t else f fi  btrue: tt bfalse: ff so_apply: x[s] iff: P  Q and: P  Q bool: unit: Unit or: P  Q not: A false: False it: guard: {T}
Lemmas :  assert_witness fpf-dom_wf fpf-join_wf top_wf fpf-trivial-subtype-top fpf-join-dom2 fpf-join-ap-sq assert_wf fpf-all_wf fpf_wf deq_wf bool_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot

\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[P:x:A  {}\mrightarrow{}  Type  {}\mrightarrow{}  \mBbbP{}]
            \mforall{}f,g:x:A  fp->  Type.
                (\mforall{}y\mmember{}dom(f).  w=f(y)  {}\mRightarrow{}    P[y;w]
                {}\mRightarrow{}  \mforall{}y\mmember{}dom(g).  w=g(y)  {}\mRightarrow{}    P[y;w]
                {}\mRightarrow{}  \mforall{}y\mmember{}dom(f  \moplus{}  g).  w=f  \moplus{}  g(y)  {}\mRightarrow{}    P[y;w])


Date html generated: 2011_08_10-AM-08_07_37
Last ObjectModification: 2011_06_18-AM-08_25_25

Home Index