{ [A:Type]. [B:A  Type].
    eq:EqDecider(A). f,h,g:a:A fp-B[a] List. R:a:A
                                                      (B[a] List  B[a]  ).
      (h  f  h  fpf-union-join(eq;R;f;g)) }

{ Proof }



Definitions occuring in Statement :  fpf-union-join: fpf-union-join(eq;R;f;g) fpf-contains: f  g fpf: a:A fp-B[a] bool: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies: P  Q isect: x:A. B[x] function: x:A  B[x] list: type List universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] so_apply: x[s] implies: P  Q fpf-contains: f  g cand: A c B member: t  T so_lambda: x.t[x] assert: b or: P  Q top: Top btrue: tt ifthenelse: if b then t else f fi  true: True l_contains: A  B l_all: (xL.P[x]) fpf-cap: f(x)?z prop: bfalse: ff rev_implies: P  Q iff: P  Q and: P  Q sq_type: SQType(T) uimplies: b supposing a guard: {T} not: A false: False bool: unit: Unit it:
Lemmas :  assert_wf fpf-dom_wf fpf-trivial-subtype-top fpf-contains_wf bool_wf fpf_wf deq_wf fpf-union-join-dom subtype_base_sq bool_subtype_base assert_elim fpf-union-join-ap fpf-union-contains l_member_wf fpf-ap_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot

\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}eq:EqDecider(A).  \mforall{}f,h,g:a:A  fp->  B[a]  List.  \mforall{}R:\mcap{}a:A.  (B[a]  List  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  \mBbbB{}).
        (h  \msubseteq{}\msubseteq{}  f  {}\mRightarrow{}  h  \msubseteq{}\msubseteq{}  fpf-union-join(eq;R;f;g))


Date html generated: 2011_08_10-AM-08_01_59
Last ObjectModification: 2011_06_18-AM-08_20_14

Home Index