{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [P:A  ].
  [f:x:A fp-B[x]]. [a:A].
    (fpf-vals(eq;P;f) ~ []) supposing 
       ((b:A. ((P b)  b = a)) and 
       (a  dom(f))) }

{ Proof }



Definitions occuring in Statement :  fpf-vals: fpf-vals(eq;P;f) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b bool: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: P  Q not: A apply: f a function: x:A  B[x] nil: [] universe: Type sqequal: s ~ t equal: s = t deq: EqDecider(T)
Definitions :  so_apply: x[s] all: x:A. B[x] fpf-vals: fpf-vals(eq;P;f) let: let pi1: fst(t) pi2: snd(t) member: t  T prop: so_lambda: x.t[x] ifthenelse: if b then t else f fi  btrue: tt implies: P  Q bfalse: ff filter: filter(P;l) and: P  Q reduce: reduce(f;k;as) or: P  Q guard: {T} zip: zip(as;bs) ycomb: Y false: False fpf: a:A fp-B[a] uall: [x:A]. B[x] bool: iff: P  Q unit: Unit uimplies: b supposing a not: A rev_implies: P  Q fpf-dom: x  dom(f) it:
Lemmas :  iff_wf assert_wf not_wf fpf-dom_wf fpf-trivial-subtype-top fpf_wf bool_wf deq_wf deq-member_wf l_member_wf bnot_wf iff_transitivity iff_weakening_uiff eqtt_to_assert assert-deq-member eqff_to_assert assert_of_bnot not_functionality_wrt_iff nil_member false_wf no_repeats_wf cons_member no_repeats_cons uiff_transitivity remove-repeats_wf remove-repeats_property filter_wf

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[a:A].
    (fpf-vals(eq;P;f)  \msim{}  [])  supposing  ((\mforall{}b:A.  (\muparrow{}(P  b)  \mLeftarrow{}{}\mRightarrow{}  b  =  a))  and  (\mneg{}\muparrow{}a  \mmember{}  dom(f)))


Date html generated: 2011_08_10-AM-08_03_55
Last ObjectModification: 2011_06_18-AM-08_22_19

Home Index