{ [T:Type]. [g:LabeledGraph(T)]. [x:lg-size(g)].
    is-dag(lg-remove(g;x)) supposing is-dag(g) }

{ Proof }



Definitions occuring in Statement :  is-dag: is-dag(g) lg-remove: lg-remove(g;n) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] natural_number: $n universe: Type
Definitions :  uall: [x:A]. B[x] int_seg: {i..j} uimplies: b supposing a is-dag: is-dag(g) member: t  T all: x:A. B[x] implies: P  Q lelt: i  j < k and: P  Q le: A  B not: A false: False nat: prop: iff: P  Q ifthenelse: if b then t else f fi  or: P  Q btrue: tt bfalse: ff sq_type: SQType(T) guard: {T}
Lemmas :  lg-size-remove lg-edge-remove le_wf ifthenelse_wf lt_int_wf lg-edge_wf lg-remove_wf int_seg_wf lg-size_wf nat_wf is-dag_wf labeled-graph_wf bool_wf assert_wf le_int_wf bnot_wf bool_cases subtype_base_sq bool_subtype_base iff_weakening_uiff uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int

\mforall{}[T:Type].  \mforall{}[g:LabeledGraph(T)].  \mforall{}[x:\mBbbN{}lg-size(g)].    is-dag(lg-remove(g;x))  supposing  is-dag(g)


Date html generated: 2011_08_16-PM-06_42_44
Last ObjectModification: 2011_06_20-AM-02_01_42

Home Index