Nuprl Lemma : is-interface-part

[Info:Type]. [es:EO+(Info)]. [T:Type]. [X:EClass(T)]. [g:E(X)  Id]. [i:Id]. [e:E].
  uiff(e  (X|g=i);(e  X)  ((g e) = i))


Proof not projected




Definitions occuring in Statement :  es-interface-part: (X|g=i) es-E-interface: E(X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E Id: Id assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] and: P  Q apply: f a function: x:A  B[x] universe: Type equal: s = t
Definitions :  guard: {T} bfalse: ff btrue: tt exposed-it: exposed-it implies: P  Q all: x:A. B[x] member: t  T ifthenelse: if b then t else f fi  let: let eq_int: (i = j) es-interface-part: (X|g=i) in-eclass: e  X assert: b es-E-interface: E(X) eclass: EClass(A[eo; e]) uall: [x:A]. B[x] and: P  Q true: True cand: A c B prop: uimplies: b supposing a uiff: uiff(P;Q) unit: Unit nat: bool: sq_type: SQType(T) not: A false: False subtype: S  T it:
Lemmas :  event-ordering+_wf bag_wf event-ordering+_inc es-E_wf Id_wf not_functionality_wrt_uiff assert_of_bnot eqff_to_assert not_wf bnot_wf assert_of_eq_int eqtt_to_assert assert_wf equal_wf uiff_transitivity bool_wf nat_wf bag-size_wf eq_int_wf and_wf eq_int_eq_true assert-eq-id bool_subtype_base subtype_base_sq eq_id_wf true_wf pair_wf false_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[T:Type].  \mforall{}[X:EClass(T)].  \mforall{}[g:E(X)  {}\mrightarrow{}  Id].  \mforall{}[i:Id].  \mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  (X|g=i);(\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  ((g  e)  =  i))


Date html generated: 2012_01_23-PM-12_25_53
Last ObjectModification: 2011_12_13-PM-02_44_19

Home Index