{ [T:Type]. [P:T  ].
    g1,g2:LabeledGraph(T).
      (xlg-append(g1;g2).P[x]  xg1.P[x]  xg2.P[x]) }

{ Proof }



Definitions occuring in Statement :  lg-all: xG.P[x] lg-append: lg-append(g1;g2) labeled-graph: LabeledGraph(T) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: P  Q and: P  Q function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] prop: all: x:A. B[x] lg-all: xG.P[x] lg-append: lg-append(g1;g2) lg-size: lg-size(g) top: Top member: t  T implies: P  Q iff: P  Q so_apply: x[s] and: P  Q rev_implies: P  Q int_seg: {i..j} lelt: i  j < k ifthenelse: if b then t else f fi  le: A  B btrue: tt bfalse: ff not: A false: False labeled-graph: LabeledGraph(T) nat: bool: unit: Unit uimplies: b supposing a sq_type: SQType(T) guard: {T} it:
Lemmas :  lg-size_wf length-append map_wf int_seg_wf nat_wf top_wf length-map-sq labeled-graph_wf lg-label_wf lg-append_wf lg-label-append lt_int_wf bool_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert_of_lt_int le_wf le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int lg-label_wf_dag subtype_base_sq int_subtype_base nat_properties int_seg_properties

\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}g1,g2:LabeledGraph(T).    (\mforall{}x\mmember{}lg-append(g1;g2).P[x]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x\mmember{}g1.P[x]  \mwedge{}  \mforall{}x\mmember{}g2.P[x])


Date html generated: 2011_08_16-PM-06_46_00
Last ObjectModification: 2011_06_18-AM-10_58_14

Home Index