{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [P:A  ].
  [f:x:A fp-B[x]]. [x:{a:A| (P a)} ]. [v:B[x]].
    {(x  dom(f))  (v = f(x))} supposing (<x, v fpf-vals(eq;P;f)) }

{ Proof }



Definitions occuring in Statement :  fpf-vals: fpf-vals(eq;P;f) fpf-ap: f(x) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b bool: uimplies: b supposing a uall: [x:A]. B[x] guard: {T} so_apply: x[s] and: P  Q set: {x:A| B[x]}  apply: f a function: x:A  B[x] pair: <a, b> product: x:A  B[x] universe: Type equal: s = t l_member: (x  l) deq: EqDecider(T)
Definitions :  bnot: b bfalse: ff btrue: tt l_all: (xL.P[x]) filter: filter(P;l) natural_number: $n select: l[i] length: ||as|| real: grp_car: |g| int: intensional-universe: IType nil: [] sq_type: SQType(T) fpf-sub: f  g nat: tag-by: zT or: P  Q record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B union: left + right fpf-domain: fpf-domain(f) cand: A c B fpf-cap: f(x)?z list: type List top: Top subtype: S  T suptype: suptype(S; T) rev_implies: P  Q iff: P  Q fpf-dom: x  dom(f) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) exists: x:A. B[x] subtype_rel: A r B axiom: Ax fpf-ap: f(x) implies: P  Q void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  and: P  Q guard: {T} fpf-vals: fpf-vals(eq;P;f) pair: <a, b> l_member: (x  l) uimplies: b supposing a prop: product: x:A  B[x] lambda: x.A[x] apply: f a so_apply: x[s] so_lambda: x.t[x] fpf: a:A fp-B[a] bool: set: {x:A| B[x]}  assert: b all: x:A. B[x] isect: x:A. B[x] uall: [x:A]. B[x] function: x:A  B[x] universe: Type member: t  T deq: EqDecider(T) equal: s = t tactic: Error :tactic
Lemmas :  l_member_subtype member-fpf-vals bool_wf member_wf assert_wf iff_wf fpf-dom_wf guard_wf assert_witness fpf-vals_wf l_member_wf fpf_wf deq_wf subtype_rel_wf top_wf fpf-trivial-subtype-top strong-subtype-deq-subtype strong-subtype_wf strong-subtype-set3 strong-subtype-self fpf-type subtype-fpf3 subtype_rel_product subtype_rel_list subtype_base_sq false_wf ifthenelse_wf true_wf list-subtype subtype_rel_dep_function intensional-universe_wf nat_wf length_wf1 select_wf list-set-type2 l_all_wf length_wf_nat

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[x:\{a:A|  \muparrow{}(P  a)\}  ].
\mforall{}[v:B[x]].
    \{(\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (v  =  f(x))\}  supposing  (<x,  v>  \mmember{}  fpf-vals(eq;P;f))


Date html generated: 2011_08_10-AM-08_03_35
Last ObjectModification: 2011_06_18-AM-08_22_12

Home Index