Nuprl Lemma : member-fpf-vals

[A:Type]
  eq:EqDecider(A)
    [B:A  Type]
      P:A  . f:x:A fp-B[x]. x:A. v:B[x].
        ((<x, v fpf-vals(eq;P;f))  {((x  dom(f))  ((P x)))  (v = f(x))})


Proof not projected




Definitions occuring in Statement :  fpf-vals: fpf-vals(eq;P;f) fpf-ap: f(x) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b bool: uall: [x:A]. B[x] guard: {T} so_apply: x[s] all: x:A. B[x] iff: P  Q and: P  Q apply: f a function: x:A  B[x] pair: <a, b> product: x:A  B[x] universe: Type equal: s = t l_member: (x  l) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] so_apply: x[s] fpf-vals: fpf-vals(eq;P;f) fpf-dom: x  dom(f) fpf-ap: f(x) let: let pi1: fst(t) pi2: snd(t) member: t  T implies: P  Q so_lambda: x.t[x] zip: zip(as;bs) filter: filter(P;l) assert: b deq-member: deq-member(eq;x;L) reduce: reduce(f;k;as) ifthenelse: if b then t else f fi  bfalse: ff ycomb: Y prop: or: P  Q guard: {T} btrue: tt map: map(f;as) subtype: S  T eqof: eqof(d) rev_implies: P  Q cand: A c B and: P  Q iff: P  Q true: True squash: T top: Top bor: p q bool: fpf: a:A fp-B[a] sq_type: SQType(T) uimplies: b supposing a unit: Unit not: A false: False uiff: uiff(P;Q) deq: EqDecider(T) it:
Lemmas :  subtype_base_sq bool_wf bool_subtype_base deq-member_wf remove-repeats_wf iff_transitivity equal_wf assert_wf l_member_wf iff_weakening_uiff eqtt_to_assert assert-deq-member member-remove-repeats btrue_wf bnot_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_iff bfalse_wf fpf_wf deq_wf cons_member subtype_rel_list list-subtype uiff_transitivity guard_wf assert_witness bor_wf pair_wf and_wf pi1_wf_top pi2_wf assert-deq or_functionality_wrt_iff assert_of_bor or_wf not_assert_elim assert_elim not_functionality_wrt_uiff btrue_neq_bfalse

\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type]
            \mforall{}P:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:x:A  fp->  B[x].  \mforall{}x:A.  \mforall{}v:B[x].
                ((<x,  v>  \mmember{}  fpf-vals(eq;P;f))  \mLeftarrow{}{}\mRightarrow{}  \{((\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\muparrow{}(P  x)))  \mwedge{}  (v  =  f(x))\})


Date html generated: 2012_01_23-AM-11_55_07
Last ObjectModification: 2011_12_10-PM-12_03_40

Home Index