{ [Info:Type]. [es:EO+(Info)]. [X,Y:EClass(Top)]. [d:Top]. [e:E].
    (X'?d) when Y(e) ~ <Y(e), if e  (X)' then (X)'(e) else d fi > 
    supposing e  (X'?d) when Y }

{ Proof }



Definitions occuring in Statement :  es-prior-class-when: (X'?d) when Y es-prior-val: (X)' eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] top: Top pair: <a, b> universe: Type sqequal: s ~ t
Definitions :  implies: P  Q filter: filter(P;l) pair: <a, b> nil: [] qabs: |r| append: as @ bs strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) exists: x:A. B[x] so_lambda: x.t[x] sq_type: SQType(T) eclass-val: X(e) sqequal: s ~ t es-E-interface: E(X) quotient: x,y:A//B[x; y] decide: case b of inl(x) =s[x] | inr(y) =t[y] product: x:A  B[x] es-prior-class-when: (X'?d) when Y in-eclass: e  X set: {x:A| B[x]}  prop: assert: b uimplies: b supposing a void: Void bag: bag(T) subtype: S  T subtype_rel: A r B atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  fpf: a:A fp-B[a] Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  true: True bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) false: False limited-type: LimitedType bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: bool: union: left + right unit: Unit RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  fpf-cap: f(x)?z
Lemmas :  es-interface-subtype_rel eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf not_wf bool_wf true_wf false_wf subtype_rel_wf top_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf es-prior-class-when_wf es-interface-subtype_rel2 es-interface-top member_wf eclass_wf in-eclass_wf assert_wf eclass-val_wf subtype_base_sq product_subtype_base isect_subtype_base

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].  \mforall{}[d:Top].  \mforall{}[e:E].
    (X'?d)  when  Y(e)  \msim{}  <Y(e),  if  e  \mmember{}\msubb{}  (X)'  then  (X)'(e)  else  d  fi  >  supposing  \muparrow{}e  \mmember{}\msubb{}  (X'?d)  when  Y


Date html generated: 2011_08_16-PM-05_41_07
Last ObjectModification: 2011_06_20-AM-01_30_22

Home Index