{ [Info,T:Type].
    es:EO+(Info). X:EClass(T).
      [P:E(X)  ]
        ((e:E(X)
            (P[e] supposing e  prior(X)
             P[prior(X)(e)]  P[e] supposing e  prior(X)))
         (e:E(X). P[e])) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) assert: b uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] not: A implies: P  Q and: P  Q function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] prop: implies: P  Q and: P  Q uimplies: b supposing a assert: b so_apply: x[s] btrue: tt member: t  T ifthenelse: if b then t else f fi  true: True top: Top cand: A c B so_lambda: x y.t[x; y] not: A nat: ge: i  j  le: A  B false: False squash: T es-E-interface: E(X) sq_type: SQType(T) guard: {T} so_apply: x[s1;s2] strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] decidable: Dec(P) or: P  Q subtype: S  T
Lemmas :  subtype_base_sq bool_wf bool_subtype_base es-E-interface_wf not_wf assert_wf in-eclass_wf es-prior-interface_wf eclass_wf es-E_wf event-ordering+_inc event-ordering+_wf es-interface-subtype_rel2 top_wf eclass-val_wf2 assert_elim es-causl-swellfnd nat_properties ge_wf nat_wf le_wf es-causl_wf assert_witness es-interface-top decidable__assert es-prior-interface-causl

\mforall{}[Info,T:Type].
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(T).
        \mforall{}[P:E(X)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}e:E(X).  (P[e]  supposing  \mneg{}\muparrow{}e  \mmember{}\msubb{}  prior(X)  \mwedge{}  P[prior(X)(e)]  {}\mRightarrow{}  P[e]  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)))
            {}\mRightarrow{}  (\mforall{}e:E(X).  P[e]))


Date html generated: 2011_08_16-PM-04_50_01
Last ObjectModification: 2011_06_20-AM-01_08_27

Home Index