{ [Info,T:Type].
    es:EO+(Info). X:EClass(T).
      [P:T  ]
        ((e:E(X)
            (P[X(e)] supposing e  (X)'
             P[(X)'(e)]  P[X(e)] supposing e  (X)'))
         (e:E(X). P[X(e)])) }

{ Proof }



Definitions occuring in Statement :  es-prior-val: (X)' es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) assert: b uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] not: A implies: P  Q and: P  Q function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] prop: implies: P  Q and: P  Q uimplies: b supposing a assert: b so_apply: x[s] member: t  T cand: A c B so_lambda: x y.t[x; y] btrue: tt ifthenelse: if b then t else f fi  true: True not: A nat: ge: i  j  le: A  B false: False squash: T es-E-interface: E(X) so_apply: x[s1;s2] sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P  Q strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] es-locl: (e <loc e') subtype: S  T
Lemmas :  es-E-interface_wf not_wf assert_wf in-eclass_wf es-prior-val_wf top_wf eclass-val_wf es-E_wf event-ordering+_wf subtype_base_sq bool_subtype_base event-ordering+_inc bool_wf eclass_wf assert_elim decidable__assert es-interface-top es-causl-swellfnd nat_properties ge_wf nat_wf le_wf es-causl_wf assert_witness prior-val-val

\mforall{}[Info,T:Type].
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(T).
        \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}e:E(X).  (P[X(e)]  supposing  \mneg{}\muparrow{}e  \mmember{}\msubb{}  (X)'  \mwedge{}  P[(X)'(e)]  {}\mRightarrow{}  P[X(e)]  supposing  \muparrow{}e  \mmember{}\msubb{}  (X)'))
            {}\mRightarrow{}  (\mforall{}e:E(X).  P[X(e)]))


Date html generated: 2011_08_16-PM-05_09_05
Last ObjectModification: 2011_06_20-AM-01_12_03

Home Index