{ [Info:Type]. [es:EO+(Info)]. [T:Type]. [X:EClass(T)]. [e:E]. [e':E(X)].
    ((X)'(e) = X(e')) supposing (((e' <loc prior(X)(e))) and (e' <loc e)) }

{ Proof }



Definitions occuring in Statement :  es-prior-val: (X)' es-prior-interface: prior(X) es-E-interface: E(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E uimplies: b supposing a uall: [x:A]. B[x] not: A universe: Type equal: s = t
Definitions :  void: Void axiom: Ax es-prior-val: (X)' cand: A c B guard: {T} btrue: tt sq_type: SQType(T) es-interface-at: X@i es-local-pred: last(P) bool: rev_implies: P  Q exists: x:A. B[x] implies: P  Q iff: P  Q fpf-cap: f(x)?z true: True in-eclass: e  X es-loc: loc(e) intensional-universe: IType false: False strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  less_than: a < b uiff: uiff(P;Q) fpf: a:A fp-B[a] decide: case b of inl(x) =s[x] | inr(y) =t[y] es-prior-interface: prior(X) eclass-val: X(e) infix_ap: x f y pair: <a, b> Id: Id es-causl: (e < e') product: x:A  B[x] and: P  Q not: A set: {x:A| B[x]}  assert: b prop: es-locl: (e <loc e') uimplies: b supposing a es-E-interface: E(X) union: left + right subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top token: "$token" ifthenelse: if b then t else f fi  record-select: r.x event_ordering: EO es-E: E lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  or: P  Q null: null(as) es-le: e loc e'  isl: isl(x) can-apply: can-apply(f;x)
Lemmas :  es-locl_transitivity2 es-le-prior-interface-val prior-val-is es-E_wf member_wf es-locl_wf not_wf false_wf subtype_rel_self event-ordering+_inc es-interface-top eclass_wf es-E-interface_wf event-ordering+_wf intensional-universe_wf subtype_rel_wf Id_wf es-loc_wf es-causl_wf es-prior-interface_wf eclass-val_wf eclass-val_wf2 assert_wf ifthenelse_wf in-eclass_wf true_wf is-prior-interface bool_wf subtype_base_sq bool_subtype_base assert_elim es-prior-val_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[T:Type].  \mforall{}[X:EClass(T)].  \mforall{}[e:E].  \mforall{}[e':E(X)].
    ((X)'(e)  =  X(e'))  supposing  ((\mneg{}(e'  <loc  prior(X)(e)))  and  (e'  <loc  e))


Date html generated: 2011_08_16-PM-05_07_08
Last ObjectModification: 2011_06_20-AM-01_11_03

Home Index