{ tg1,tg2:Id. srclocs,dstlocs:Id List.
    (ddstlocs.
       (ssrclocs.
          (kRcvs(tg1) on links(tg2) from srclocs to dstlocs. (source(lnk(k))
          = s)
           (destination(lnk(k)) = d)))) }

{ Proof }



Definitions occuring in Statement :  rcvs-on: Rcvs(tg) on links links-from-to: links(tg) from srclocs to dstlocs ldst: destination(l) lsrc: source(l) lnk: lnk(k) isrcv: isrcv(k) Knd: Knd Id: Id assert: b all: x:A. B[x] and: P  Q set: {x:A| B[x]}  list: type List equal: s = t l_exists: (xL. P[x]) l_all: (xL.P[x])
Definitions :  member: t  T l_member: (x  l) Id: Id set: {x:A| B[x]}  equal: s = t assert: b Knd: Knd function: x:A  B[x] all: x:A. B[x] isrcv: isrcv(k) list: type List lnk: lnk(k) lsrc: source(l) bool: implies: P  Q exists: x:A. B[x] btrue: tt true: True guard: {T} sq_type: SQType(T) product: x:A  B[x] decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  atom: Atom$n isl: isl(x) IdLnk: IdLnk ldst: destination(l) universe: Type cand: A c B and: P  Q links-from-to: links(tg) from srclocs to dstlocs rcvs-on: Rcvs(tg) on links prop: less_than: a < b ldst_mk_lnk: ldst_mk_lnk{ldst_mk_lnk_compseq_tag_def:o}(n; j; i) lnk_rcv: lnk_rcv{lnk_rcv_compseq_tag_def:o}(tg; l) lsrc_mk_lnk: lsrc_mk_lnk{lsrc_mk_lnk_compseq_tag_def:o}(n; j; i) lname_mk_lnk: lname_mk_lnk{lname_mk_lnk_compseq_tag_def:o}(n; j; i) isrcv_rcv: isrcv_rcv{isrcv_rcv_compseq_tag_def:o}(tg; l) tag_rcv: tag_rcv{tag_rcv_compseq_tag_def:o}(tg; l) append: as @ bs union: left + right or: P  Q cons: [car / cdr] rev_implies: P  Q iff: P  Q so_lambda: x.t[x] map: map(f;as) hd: hd(l) last: last(L) remove-repeats: remove-repeats(eq;L) select: l[i] strong-subtype: strong-subtype(A;B) subtype_rel: A r B nat: l_exists: (xL. P[x]) l_all: (xL.P[x]) MaAuto: Error :MaAuto,  mk_lnk: (link(n) from i to j) rcv: rcv(l,tg) CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  D: Error :D,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic,  tagof: tag(k) lname: lname(l) limited-type: LimitedType subtype: S  T void: Void lambda: x.A[x]
Lemmas :  iff_transitivity member-rcvs-on and_functionality_wrt_iff iff_wf rev_implies_wf member-links-from-to member_wf Id_sq lname_wf tagof_wf btrue_wf guard_wf IdLnk_wf l_all_wf l_exists_wf l_member-settype l_member_subtype rcv_wf mk_lnk_wf l_member_wf Knd_wf rcvs-on_wf links-from-to_wf lsrc_wf Id_wf ldst_wf lnk_wf assert_wf bool_sq assert_elim isrcv_wf

\mforall{}tg1,tg2:Id.  \mforall{}srclocs,dstlocs:Id  List.
    (\mforall{}d\mmember{}dstlocs.(\mforall{}s\mmember{}srclocs.(\mexists{}k\mmember{}Rcvs(tg1)  on  links(tg2)  from  srclocs  to  dstlocs.  (source(lnk(k))  =  s)
                                  \mwedge{}  (destination(lnk(k))  =  d))))


Date html generated: 2011_08_10-AM-07_46_47
Last ObjectModification: 2010_09_24-PM-09_19_51

Home Index