{ 
[M:Type 
 Type]
    
[n2m:
 
 pMsg(P.M[P])]. 
[l2m:Id 
 pMsg(P.M[P])]. 
[S0:System(P.M[P])].
    
[env:pEnvType(P.M[P])].
      
[e:runEvents(pRun(S0;env;n2m;l2m))]
        ((fst(fst(run-info(pRun(S0;env;n2m;l2m);e)))) < run-event-step(e)) 
      supposing run-initialization(pRun(S0;env;n2m;l2m);snd(S0)) 
    supposing Continuous+(P.M[P]) }
{ Proof }
Definitions occuring in Statement : 
run-initialization: run-initialization(r;G), 
run-event-step: run-event-step(e), 
runEvents: runEvents(r), 
run-info: run-info(r;e), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
pEnvType: pEnvType(T.M[T]), 
System: System(P.M[P]), 
pMsg: pMsg(P.M[P]), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat:
, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
pi2: snd(t), 
less_than: a < b, 
function: x:A 
 B[x], 
universe: Type
Definitions : 
let: let, 
is-dag: is-dag(g), 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
ifthenelse: if b then t else f fi , 
assert:
b, 
lg-all:
x
G.P[x], 
natural_number: $n, 
axiom: Ax, 
run-event-step: run-event-step(e), 
run-info: run-info(r;e), 
pi1: fst(t), 
runEvents: runEvents(r), 
void: Void, 
nat_plus: 
, 
fpf-dom: x 
 dom(f), 
false: False, 
guard: {T}, 
pair: <a, b>, 
pInTransit: pInTransit(P.M[P]), 
unit: Unit, 
int:
, 
subtype: S 
 T, 
tag-by: z
T, 
rev_implies: P 
 Q, 
or: P 
 Q, 
implies: P 
 Q, 
iff: P 

 Q, 
labeled-graph: LabeledGraph(T), 
record+: record+, 
record: record(x.T[x]), 
fset: FSet{T}, 
dataflow: dataflow(A;B), 
isect2: T1 
 T2, 
b-union: A 
 B, 
union: left + right, 
bag: bag(T), 
top: Top, 
true: True, 
fpf-sub: f 
 g, 
deq: EqDecider(T), 
ma-state: State(ds), 
class-program: ClassProgram(T), 
es-E-interface: E(X), 
fpf-cap: f(x)?z, 
eclass: EClass(A[eo; e]), 
fpf: a:A fp-> B[a], 
ext-eq: A 
 B, 
set: {x:A| B[x]} , 
ldag: LabeledDAG(T), 
list: type List, 
strong-subtype: strong-subtype(A;B), 
le: A 
 B, 
ge: i 
 j , 
not:
A, 
less_than: a < b, 
and: P 
 Q, 
uiff: uiff(P;Q), 
subtype_rel: A 
r B, 
fulpRunType: fulpRunType(T.M[T]), 
product: x:A 
 B[x], 
pi2: snd(t), 
run-initialization: run-initialization(r;G), 
pEnvType: pEnvType(T.M[T]), 
Id: Id, 
nat:
, 
uimplies: b supposing a, 
prop:
, 
strong-type-continuous: Continuous+(T.F[T]), 
all:
x:A. B[x], 
isect:
x:A. B[x], 
so_lambda: 
x.t[x], 
equal: s = t, 
lambda:
x.A[x], 
apply: f a, 
universe: Type, 
uall:
[x:A]. B[x], 
function: x:A 
 B[x], 
pMsg: pMsg(P.M[P]), 
CollapseTHEN: Error :CollapseTHEN, 
so_apply: x[s], 
System: System(P.M[P]), 
member: t 
 T, 
AssertBY: Error :AssertBY, 
Auto: Error :Auto, 
CollapseTHENA: Error :CollapseTHENA, 
RepUR: Error :RepUR, 
Complete: Error :Complete, 
Try: Error :Try, 
MaAuto: Error :MaAuto, 
pRun: pRun(S0;env;nat2msg;loc2msg), 
pRunType: pRunType(T.M[T]), 
tactic: Error :tactic, 
lg-label: lg-label(g;x), 
lg-size: lg-size(g), 
lelt: i 
 j < k, 
int_seg: {i..j
}, 
exists:
x:A. B[x], 
D: Error :D, 
RepeatFor: Error :RepeatFor, 
length: ||as||, 
btrue: tt, 
eq_int: (i =
 j), 
bool:
, 
sq_type: SQType(T), 
is-run-event: is-run-event(r;t;x), 
bnot: 
b, 
bor: p 
q, 
band: p 
 q, 
bimplies: p 

 q, 
es-eq-E: e = e', 
eq_lnk: a = b, 
eq_id: a = b, 
eq_str: Error :eq_str, 
deq-all-disjoint: deq-all-disjoint(eq;ass;bs), 
deq-disjoint: deq-disjoint(eq;as;bs), 
deq-member: deq-member(eq;x;L), 
q_le: q_le(r;s), 
q_less: q_less(r;s), 
qeq: qeq(r;s), 
eq_atom: eq_atom$n(x;y), 
eq_type: eq_type(T;T'), 
b-exists: (
i<n.P[i])_b, 
bl-exists: (
x
L.P[x])_b, 
bl-all: (
x
L.P[x])_b, 
dcdr-to-bool: [d]
, 
infix_ap: x f y, 
grp_blt: a <
 b, 
set_blt: a <
 b, 
null: null(as), 
eq_atom: x =a y, 
bfalse: ff, 
le_int: i 
z j, 
lt_int: i <z j, 
grp_car: |g|, 
real:
, 
limited-type: LimitedType, 
atom: Atom$n, 
decide_bfalse: decide_bfalse{decide_bfalse_compseq_tag_def:o}(v11.g[v11]; v21.f[v21]), 
atom: Atom, 
pCom: pCom(P.M[P]), 
squash:
T, 
component: component(P.M[P])
Lemmas : 
true_wf, 
squash_wf, 
int_seg_properties, 
subtype_rel-ldag, 
pCom_wf, 
product_subtype_base, 
int_subtype_base, 
atom2_subtype_base, 
lg-label_wf_dag, 
bnot_wf, 
bool_cases, 
eqtt_to_assert, 
subtype_base_sq, 
bool_subtype_base, 
iff_weakening_uiff, 
eqff_to_assert, 
not_wf, 
uiff_transitivity, 
assert_of_bnot, 
assert_wf, 
not_functionality_wrt_uiff, 
assert_of_eq_int, 
eq_int_wf, 
bool_wf, 
pi1_wf_top, 
run-info_wf, 
pi1_wf, 
run-event-step_wf, 
lg-size_wf, 
pRunType_wf, 
subtype_rel_wf, 
fulpRunType_wf, 
member_wf, 
pRun_wf, 
pEnvType_wf, 
System_wf, 
pMsg_wf, 
Id_wf, 
nat_wf, 
strong-type-continuous_wf, 
pInTransit_wf, 
ldag_wf, 
top_wf, 
unit_wf, 
subtype_rel_function, 
subtype_rel_self, 
subtype_rel_simple_product, 
run-initialization_wf, 
runEvents_wf, 
labeled-graph_wf, 
pRun-invariant1
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[l2m:Id  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[S0:System(P.M[P])].
    \mforall{}[env:pEnvType(P.M[P])].
        \mforall{}[e:runEvents(pRun(S0;env;n2m;l2m))]
            ((fst(fst(run-info(pRun(S0;env;n2m;l2m);e))))  <  run-event-step(e)) 
        supposing  run-initialization(pRun(S0;env;n2m;l2m);snd(S0)) 
    supposing  Continuous+(P.M[P])
Date html generated:
2011_08_17-PM-03_40_10
Last ObjectModification:
2011_06_18-AM-11_20_40
Home
Index