Nuprl Lemma : simple-comb-1-concat-classrel

[Info,B,C:Type]. [f:B  bag(C)]. [X:EClass(B)]. [es:EO+(Info)]. [e:E]. [v:C].
  uiff(v  f@|X|(e);b:B. (v  f b  b  X(e)))


Proof not projected




Definitions occuring in Statement :  simple-comb-1: F|X| classrel: v  X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P  Q apply: f a function: x:A  B[x] universe: Type concat-lifting-1: f@ bag-member: x  bs bag: bag(T)
Definitions :  uiff: uiff(P;Q) classrel: v  X(e) simple-comb-1: F|X| concat-lifting-1: f@ squash: T exists: x:A. B[x] and: P  Q bag-member: x  bs select: l[i] member: t  T uimplies: b supposing a true: True prop: cand: A c B nat: int_seg: {i..j} le: A  B not: A implies: P  Q false: False lelt: i  j < k ifthenelse: if b then t else f fi  le_int: i z j bnot: b lt_int: i <z j bfalse: ff btrue: tt so_lambda: x y.t[x; y] so_lambda: x.t[x] uall: [x:A]. B[x] simple-comb1: x.F[x]|X| decidable: Dec(P) all: x:A. B[x] or: P  Q sq_type: SQType(T) guard: {T} so_apply: x[s1;s2] so_apply: x[s] subtype: S  T
Lemmas :  simple-comb1-concat-classrel bag-member_wf classrel_wf simple-comb_wf le_wf select_wf length_wf length_nil non_neg_length length_wf_nil length_cons length_wf_nat int_seg_wf decidable__equal_int subtype_base_sq int_subtype_base eclass_wf es-E_wf event-ordering+_inc concat-lifting1_wf lelt_wf bag_wf squash_wf exists_wf and_wf event-ordering+_wf

\mforall{}[Info,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  bag(C)].  \mforall{}[X:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    uiff(v  \mmember{}  f@|X|(e);\mdownarrow{}\mexists{}b:B.  (v  \mdownarrow{}\mmember{}  f  b  \mwedge{}  b  \mmember{}  X(e)))


Date html generated: 2012_01_23-PM-01_10_47
Last ObjectModification: 2011_12_31-AM-01_53_21

Home Index