{ [ste:st_exp{i:l}()]. [nu1,nu2:Atom  SimpleType].
    (ste-type(ste) nu1) = (ste-type(ste) nu2) 
    supposing (xste-freevars(ste).(nu1 x) = (nu2 x)) }

{ Proof }



Definitions occuring in Statement :  ste-type: ste-type(ste) ste-freevars: ste-freevars(ste) st_exp: st_exp{i:l}() simple_type: SimpleType uimplies: b supposing a uall: [x:A]. B[x] apply: f a function: x:A  B[x] atom: Atom equal: s = t l_all: (xL.P[x])
Definitions :  st_var?: Error :st_var?,  st_const?: Error :st_const?,  st_arrow?: Error :st_arrow?,  st_arrow-domain: Error :st_arrow-domain,  simple_type_ind_st_arrow: Error :simple_type_ind_st_arrow_compseq_tag_def,  st_arrow-range: Error :st_arrow-range,  ifthenelse: if b then t else f fi  st_arrow: Error :st_arrow,  list-diff: list-diff(eq;as;bs) st_exp_ind_ste_lambda: st_exp_ind_ste_lambda_compseq_tag_def st-ap: st-ap(st1;st2) atom-deq: AtomDeq l-union: as  bs eq_atom: x =a y eq_atom: eq_atom$n(x;y) st_exp_ind_ste_ap: st_exp_ind_ste_ap_compseq_tag_def void: Void st-meaning: [[st]] top: Top pi1: fst(t) st_exp_ind_ste_const: st_exp_ind_ste_const_compseq_tag_def list: type List nil: [] cons: [car / cdr] eclass: EClass(A[eo; e]) pair: <a, b> fpf: a:A fp-B[a] tl: tl(l) hd: hd(l) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) subtype_rel: A r B st_exp_ind_ste_var: st_exp_ind_ste_var_compseq_tag_def st_exp_ind: st_exp_ind product: x:A  B[x] st-constant: st-constant{i:l}(Info) union: left + right rec: rec(x.A[x]) limited-type: LimitedType ste-freevars: ste-freevars(ste) universe: Type l_member: (x  l) set: {x:A| B[x]}  lambda: x.A[x] all: x:A. B[x] axiom: Ax ste-type: ste-type(ste) apply: f a prop: l_all: (xL.P[x]) so_lambda: x.t[x] function: x:A  B[x] simple_type: Error :simple_type,  atom: Atom st_exp: st_exp{i:l}() uimplies: b supposing a equal: s = t uall: [x:A]. B[x] isect: x:A. B[x] member: t  T Auto: Error :Auto,  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  RepUR: Error :RepUR,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  rev_implies: P  Q or: P  Q iff: P  Q es-causle: e c e' implies: P  Q nat: exists: x:A. B[x] cand: A c B guard: {T} deq: EqDecider(T) bool: squash: T true: True MaAuto: Error :MaAuto,  ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  BHyp: Error :BHyp,  false: False lt_int: i <z j le_int: i z j bfalse: ff btrue: tt null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q assert: b bnot: b int: unit: Unit D: Error :D
Lemmas :  not_functionality_wrt_iff member_singleton member-list-diff false_wf assert_of_eq_atom not_functionality_wrt_uiff assert_wf assert_of_bnot uiff_transitivity not_wf eqff_to_assert bool_wf eqtt_to_assert ifthenelse_wf eq_atom_wf bnot_wf squash_wf true_wf member-union nat_wf cons_member top_wf member_wf Error :simple_type_wf,  pi1_wf_top l_all_wf l_member_wf l_all_wf2 st_exp_wf ste-freevars_wf uall_wf st-constant_wf subtype_rel_wf ste-type_wf st-ap_wf l-union_wf atom-deq_wf Error :st_arrow_wf,  list-diff_wf

\mforall{}[ste:st\_exp\{i:l\}()].  \mforall{}[nu1,nu2:Atom  {}\mrightarrow{}  SimpleType].
    (ste-type(ste)  nu1)  =  (ste-type(ste)  nu2)  supposing  (\mforall{}x\mmember{}ste-freevars(ste).(nu1  x)  =  (nu2  x))


Date html generated: 2011_08_17-PM-05_09_50
Last ObjectModification: 2011_02_04-PM-11_03_19

Home Index