Nuprl Lemma : C_TYPE-induction2

[P:C_TYPE() ─→ ℙ]
  (P[C_Void()]
   P[C_Int()]
   (∀fields:(Atom × C_TYPE()) List. ((∀i:ℕ||fields||. P[snd(fields[i])])  P[C_Struct(fields)]))
   (∀length:ℕ. ∀elems:C_TYPE().  (P[elems]  P[C_Array(length;elems)]))
   (∀to:C_TYPE(). (P[to]  P[C_Pointer(to)]))
   {∀x:C_TYPE(). P[x]})


Proof




Definitions occuring in Statement :  C_Pointer: C_Pointer(to) C_Array: C_Array(length;elems) C_Struct: C_Struct(fields) C_Int: C_Int() C_Void: C_Void() C_TYPE: C_TYPE() select: L[n] length: ||as|| list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] pi2: snd(t) all: x:A. B[x] implies:  Q function: x:A ─→ B[x] product: x:A × B[x] natural_number: $n atom: Atom
Lemmas :  C_TYPE-induction l_all_wf2 C_TYPE_wf l_member_wf list_wf all_wf int_seg_wf length_wf select_wf sq_stable__le C_Struct_wf C_Int_wf C_Void_wf
\mforall{}[P:C\_TYPE()  {}\mrightarrow{}  \mBbbP{}]
    (P[C\_Void()]
    {}\mRightarrow{}  P[C\_Int()]
    {}\mRightarrow{}  (\mforall{}fields:(Atom  \mtimes{}  C\_TYPE())  List.  ((\mforall{}i:\mBbbN{}||fields||.  P[snd(fields[i])])  {}\mRightarrow{}  P[C\_Struct(fields)]))
    {}\mRightarrow{}  (\mforall{}length:\mBbbN{}.  \mforall{}elems:C\_TYPE().    (P[elems]  {}\mRightarrow{}  P[C\_Array(length;elems)]))
    {}\mRightarrow{}  (\mforall{}to:C\_TYPE().  (P[to]  {}\mRightarrow{}  P[C\_Pointer(to)]))
    {}\mRightarrow{}  \{\mforall{}x:C\_TYPE().  P[x]\})



Date html generated: 2015_07_17-AM-07_42_52
Last ObjectModification: 2015_01_27-AM-09_47_01

Home Index